系統識別號 | U0002-1602202410115900 |
---|---|
DOI | 10.6846/tku202400089 |
論文名稱(中文) | 應用乾旱指標與非優勢排序多目標遺傳演算法於水庫運營與停灌決策之研究 |
論文名稱(英文) | Optimizing Reservoir Operations and Irrigation Suspension Strategies using Drought Indices and Non-dominated Sorting in Genetic Algorithms |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 水資源及環境工程學系碩士班 |
系所名稱(英文) | Department of Water Resources and Environmental Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 1 |
出版年 | 113 |
研究生(中文) | 楊凱崴 |
研究生(英文) | Kai-Wei Yang |
學號 | 611480095 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-01-15 |
論文頁數 | 126頁 |
口試委員 |
指導教授
-
張麗秋(changlc@mail.tku.edu.tw)
口試委員 - 張斐章(changfj@ntu.edu.tw) 口試委員 - 黃文政(b0137@mail.ntou.edu.tw) |
關鍵字(中) |
乾旱緩解 非優勢排序遺傳演算法II(NSGA-II) 水庫運營 乾旱指標 |
關鍵字(英) |
Drought Mitigation Non-dominated Sorting Genetic Algorithm II (NSGA-II) Reservoir Operation Drought Indices |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
全球發展加劇氣候變化,導致嚴重的全球變暖與極端水文事件頻率的增加,包括乾旱與洪水事件,世界各國迫切需要制定全面策略來應對社會與工業對水資源日益增長的需求,儘管台灣年均降雨量約為2500毫米,但由於其陡峭的山地地形與短源湍急的河流影響有效蓄水,聯合國將台灣列為第18個面臨水資源匱乏危機的國家,此外不均勻的時空間降雨分布,再加上長期的旱季,需要在濕季儲存水源以供依賴。 水庫在台灣的水資源管理中發揮著關鍵作用,顯著影響未來的供水能力。在乾旱與極端乾旱事件期間,積極決策於保護與有效分配水資源方面至關重要,以減少災害損失。本研究提出在不同時間尺度上使用標準化水庫蓄水量指數(SRSI)作為提前停灌預警與決策指標,且利用基於歷史數據之各百分位超越機率入流量與實際歷史入流量,應用非優勢排序多目標遺傳演算法II(NSGA-II)來模擬實際水情與極端乾旱情景下的水庫最佳放水策略。 通過探索乾旱指標與非優勢排序多目標遺傳演算法在水資源管理中的應用,本研究旨在提供有價值的見解,以增強水資源分配、乾旱緩解與水庫運營。研究結果提供有關水庫放水運營、停灌實踐與限水政策的實際建議,有助於減少未來乾旱造成的影響與相關損失,這種方法可以作為預測與管理未來乾旱事件的有價值工具,促進更廣泛範圍的可持續水資源利用。 研究結果表明,SRSI各時間尺度之數值特性能夠有效決策各區域之農業停灌,且證實NSGA-II搭配提前農業停灌之操略,能有效的顧及公共用水之優先性、農業放流項目之最佳放流配置與避免一期作期間水資源浪費,以利水資源之有效利用與儲存。 |
英文摘要 |
Global development has intensified climate change, resulting in severe global warming and an increasing frequency of extreme hydrological events, including droughts and floods. Countries worldwide are facing the urgent need to develop comprehensive strategies to cope with growing demands for water resources from society and industries. Despite an annual average rainfall of approximately 2500 mm, Taiwan is classified by the United Nations as the 18th country facing a water scarcity crisis due to its steep mountainous terrain and short, swift rivers that hinder efficient water retention. Additionally, uneven spatial and temporal rainfall distribution, coupled with an extended dry season, necessitates reliance on water stored during the wet season. Water reservoirs play a critical role in Taiwan's water resource management, significantly influencing future water supply capabilities. Proactive decision-making to conserve and effectively allocate water resources during droughts and extreme drought events is vital to mitigate disaster losses. This study proposes the use of a Standardized Reservoir Storage Index (SRSI) at different time scales as an early irrigation suspension warning and decision-making indicator. Utilizing historical data based on various percentiles of inflow and actual historical inflow, the study applies the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to simulate optimal release strategies for reservoirs under actual water conditions and extreme drought scenarios. By exploring the application of drought indices and the Non-dominated Sorting Genetic Algorithm in water resource management, the study aims to provide valuable insights into enhancing water resource allocation, drought mitigation, and reservoir operations. The results offer practical recommendations for reservoir discharge operations, irrigation suspension practices, and water restriction policies, contributing to the reduction of future drought impacts and associated losses. This approach can serve as a valuable tool for predicting and managing future drought events, promoting sustainable water resource utilization on a broader scale. The research results indicate that the numerical characteristics of SRSI at various time scales can effectively inform decisions regarding agricultural irrigation cessation in different regions. Furthermore, it is confirmed that the strategy of implementing advanced agricultural irrigation cessation, coupled with NSGA-II, can effectively consider the prioritization of public water use, optimal discharge configuration for agricultural outflows, and avoidance of water resource wastage during the first crop season. This approach facilitates the efficient utilization and storage of water resources. |
第三語言摘要 | |
論文目次 |
目錄 謝誌 II 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 論文架構 2 第二章 文獻回顧 3 2.1 乾旱指標發展與相關研究 3 2.2 遺傳演算法發展與修正演算法之研究 4 2.3 遺傳演算法應用於水資源與水庫方面之研究 5 第三章 理論概述 9 3.1 乾旱指標 9 3.2 遺傳演算法 14 3.3 非優勢排序多目標遺傳演算法 27 第四章 研究案例 32 4.1 研究區域 32 4.2 乾旱指標分析與選擇 50 4.3 水庫水資源調配決策模式 52 4.4 遺傳演算法參數設定 56 第五章 結果與討論 61 5.1 柏拉圖鋒線 63 5.2 實際水情情境結果比較 68 5.3 極端水情情境放流分析 91 第六章 結論與建議 104 6.1 結論 104 6.2 建議 105 參考文獻 106 附錄A 實際水情情境各操作統計表 111 附錄B 極端水情情境各操作統計表 119 圖目錄 圖3-1 累積機率轉換圖 11 圖3-2 SPI常態機率分布圖 12 圖3-3 遺傳演算法流程架構圖 15 圖3-4 輪盤式選取法示意圖 19 圖3-5單點交配示意圖 22 圖3-6多點交配示意圖 23 圖3-7單點突變示意圖 25 圖3-8 柏拉圖鋒線示意圖 27 圖3-9 非優勢排序多目標遺傳演算法(NSGA-II)架構圖 28 圖3-10 快速非優勢排序與擁擠距離比較示意圖 29 圖3-11 擁擠距離比較示意圖 31 圖4-1 石門水庫流域圖 33 圖4-2 石門水庫之供水系統圖 34 圖4-3石門水庫運用規線 35 圖4-4歷年2月初有效蓄水量與一期作總放流量比較圖 47 圖4-5水文年88年後2月初水庫有效蓄水量與一期作總放流量比較圖 49 圖4-7 2月初有效蓄水量與SSI之關係圖 51 圖4-8 2月初有效蓄水量與SRSI之關係圖 51 圖5-1 研究流程架構圖 62 圖5-2 水文年103年28旬至104年3旬實際流量之柏拉圖解 64 圖5-3 水文年109年28旬至110年3旬實際流量之柏拉圖解 66 表目錄 表3-1 SSI乾旱程度對照表 10 表3-2 二進位編碼範例 16 表3-3 實數編碼範例 16 表4-1石門水庫運用規線表 35 表4-2 104年石門水庫登記水權水量 38 表4-3水文年88年後之停灌區域統計表 40 表4-4石門水庫歷年濕季之水文年統計與分類表 41 表4-5石門水庫歷年乾季之水文年統計與分類表 44 表4-6 石門水庫歷次水權登記水量表 48 表4-7乾旱指標不同時間尺度與2月初有效蓄水量之相關性 51 表4-8 NSGA-II參數設定表 56 表4-9 SRSI之停灌決策各時間尺度數值範圍設定 58 表5-1 水文年88年後之乾旱停灌事件資料 63 表5-2 102年第28旬至隔年第3旬實際與模式數值 70 表5-3 102年第28旬至隔年第3旬各操作目標函數 71 表5-4 石門水庫各區域停灌決策之缺水指數數值定義 71 表5-5 石門水庫各區域公共用水之通用缺水指數數值定義 71 表5-6 90年第28旬至隔年第3旬實際與模式數值(模式未停灌) 73 表5-7 90年第28旬至隔年第3旬各操作目標函數(模式未停灌) 74 表5-8 90年第28旬至隔年第3旬實際與模式數值(石門停灌) 76 表5-9 90年第28旬至隔年第3旬各操作目標函數(石門停灌) 77 表5-10 91年第28旬至隔年第3旬實際與模式數值(模式未停灌) 79 表5-11 91年第28旬至隔年第3旬各操作目標函數(模式未停灌) 80 表5-12 91年第28旬至隔年第3旬實際與模式數值(桃園停灌) 82 表5-13 91年第28旬至隔年第3旬各操作目標函數(桃園停灌) 83 表5-14 109年第28旬至隔年第3旬實際與模式數值(模式未停灌) 85 表5-15 109年第28旬至隔年第3旬各操作目標函數(模式未停灌) 86 表5-16 109年第28旬至隔年第3旬實際與模式數值(全區域停灌) 88 表5-17 109年第28旬至隔年第3旬各操作目標函數(全區域停灌) 89 表5-18 90年第28旬至隔年第3旬實際與超越機率百分比入流量 91 表5-19 90年第28旬至隔年第3旬Q90各操作目標函數 92 表5-20 90年第28旬至隔年第3旬Q80各操作目標函數 93 表5-21 90年第28旬至隔年第3旬Q70各操作目標函數 94 表5-22 91年第28旬至隔年第3旬實際與超越機率百分比入流量 95 表5-23 91年第28旬至隔年第3旬Q90各操作目標函數 96 表5-24 91年第28旬至隔年第3旬Q80各操作目標函數 97 表5-25 91年第28旬至隔年第3旬Q70各操作目標函數 98 表5-26 91年第28旬至隔年第3旬Q60各操作目標函數 99 表5-27 109年第28旬至隔年第3旬實際與超越機率百分比入流量 100 表5-28 109年第28旬至隔年第3旬Q90各操作目標函數 101 表5-29 109年第28旬至隔年第3旬Q80各操作目標函數 102 表5-30 109年第28旬至隔年第3旬Q70各操作目標函數 103 附表A-1 92年第28旬至隔年第3旬實際與模式數值(模式未停灌) 111 附表A-2 92年第28旬至隔年第3旬各操作目標函數(模式未停灌) 112 附表A-3 92年第28旬至隔年第3旬實際與模式數值(模式停灌) 113 附表A-4 92年第28旬至隔年第3旬各操作目標函數(模式停灌) 114 附表A-5 103年第28旬至隔年第3旬實際與模式數值(模式未停灌) 114 附表A-6 103年第28旬至隔年第3旬各操作目標函數(模式未停灌) 116 附表A-7 103年第28旬至隔年第3旬實際與模式數值(模式停灌) 116 附表A-8 103年第28旬至隔年第3旬各操作目標函數(模式停灌) 118 附表B-1 92年第28旬至隔年第3旬實際與超越機率百分比入流量 119 附表B-2 92年第28旬至隔年第3旬Q90各操作目標函數 120 附表B-3 92年第28旬至隔年第3旬Q80各操作目標函數 120 附表B-4 92年第28旬至隔年第3旬Q70各操作目標函數 121 附表B-5 92年第28旬至隔年第3旬Q60各操作目標函數 121 附表B-6 92年第28旬至隔年第3旬Q50各操作目標函數 122 附表B-7 92年第28旬至隔年第3旬Q40各操作目標函數 122 附表B-8 103年第28旬至隔年第3旬實際與超越機率百分比入流量 123 附表B-9 103年第28旬至隔年第3旬Q90各操作目標函數 124 附表B-10 103年第28旬至隔年第3旬Q80各操作目標函數 124 附表B-11 103年第28旬至隔年第3旬Q70各操作目標函數 125 附表B-12 103年第28旬至隔年第3旬Q60各操作目標函數 125 附表B-13 103年第28旬至隔年第3旬Q50各操作目標函數 126 |
參考文獻 |
1. 王昱中. (2014). 智慧型水資源調配策略以因應用水需求成長. 2. 江宜眞. (2021). 應用非優勢排序多目標遺傳演算法於水庫動態規線之研究. 3. 徐宗孚. (2017). 運用賽局理論結合遺傳演算法於最佳化水庫操作之研究. 4. 陳映安. (2019). 運用非優勢排序遺傳演算法於水庫防洪操作與發電之規劃. 5. 張斐章、張麗秋(2015),「類神經網路導論-原理與應用第二版」,滄海書局。 6. 楊舜年. (2015). 建立颱洪時期抽水站智慧型最佳化操作規則. 7. 鄭仲廉. (2016). 因應都市化影響之智慧型水資源管理系統. 8. 蕭政宗, & 黃景裕. (2010). 以遺傳演算法推導考量二衝突缺水指標之南化水庫多標的最佳限水策略. 農業工程學報, 56(4), 27-41. 9. Anand, J., Gosain, A. K., & Khosa, R. (2018). Optimisation of multipurpose reservoir operation by coupling soil and water assessment tool (SWAT) and genetic algorithm for optimal operating policy (case study: Ganga River Basin). Sustainability, 10(5), 1660. 10. Chang, F. J., & Chen, L. (1998). Real-coded genetic algorithm for rule-based flood control reservoir management. Water resources management, 12, 185-198. 11. Chang, L. C., & Chang, F. J. (2001). Intelligent control for modelling of real‐time reservoir operation. Hydrological processes, 15(9), 1621-1634. 12. Chen, L. (2003). Real coded genetic algorithm optimization of long term reservoir operation 1. JAWRA Journal of the American Water Resources Association, 39(5), 1157-1165. 13. Cheng, C. T., Wang, W. C., Xu, D. M., & Chau, K. W. (2008). Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resources Management, 22, 895-909. 14. Chang, L. C. (2008). Guiding rational reservoir flood operation using penalty-type genetic algorithm. Journal of Hydrology, 354(1-4), 65-74. 15. Chang, L. C., & Chang, F. J. (2009). Multi-objective evolutionary algorithm for operating parallel reservoir system. Journal of hydrology, 377(1-2), 12-20. 16. Chang, L. C., Chang, F. J., Wang, K. W., & Dai, S. Y. (2010). Constrained genetic algorithms for optimizing multi-use reservoir operation. Journal of Hydrology, 390(1-2), 66-74. 17. Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex systems, 9(2), 115-148. 18. Deb, K., & Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and informatics, 26, 30-45. 19. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6 (pp. 849-858). Springer Berlin Heidelberg. 20. Edwards, D.C., 1997. Characteristics of 20th Century drought in the United States at multiple time scales, Air Force Inst of Tech Wright-Patterson Afb Oh 21. Fonseca, C. M., & Fleming, P. J. (1993, July). Genetic algorithms for multiobjective optimization: formulationdiscussion and generalization. In Icga (Vol. 93, No. July, pp. 416-423). 22. Gusyev, M., Hasegawa, A., Magome, J., Kuribayashi, D., Sawano, H., & Lee, S. (2015, December). Drought assessment in the Pampanga River basin, the Philippines–Part 1: Characterizing a role of dams in historical droughts with standardized indices. In Proceedings of the 21st international congress on modelling and simulation (MODSIM 2015), November 29th–December 4th, Queensland, Australia. 23. Hakimi-Asiabar, M., Ghodsypour, S. H., & Kerachian, R. (2010). Deriving operating policies for multi-objective reservoir systems: application of self-learning genetic algorithm. Applied Soft Computing, 10(4), 1151-1163. 24. McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). 25. Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248. 26. Saemi, M., Ahmadi, M., & Varjani, A. Y. (2007). Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. Journal of Petroleum Science and Engineering, 59(1-2), 97-105. 27. Telesca, L., Lovallo, M., Lopez-Moreno, I., & Vicente-Serrano, S. (2012). Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index (SSI) time series in the Ebro basin (Spain). Physica A: Statistical Mechanics and its Applications, 391(4), 1662-1678. 28. Tsai, W. P., Chang, F. J., Chang, L. C., & Herricks, E. E. (2015). AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands. Journal of Hydrology, 530, 634-644. 29. Uen, T. S., Chang, F. J., Zhou, Y., & Tsai, W. P. (2018). Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Science of the Total Environment, 633, 341-351. 30. Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., & Morán-Tejeda, E. (2012). Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17(2), 318-332. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信