系統識別號 | U0002-1601202014383100 |
---|---|
DOI | 10.6846/TKU.2020.00442 |
論文名稱(中文) | 來臺觀光旅客價值偏好之探討—以Instagram為例 |
論文名稱(英文) | Exploring the Preference of the Coming to Taiwan Tourists : A Case Study of Instagram |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 公共行政學系公共政策碩士班 |
系所名稱(英文) | Department of Public Administration |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 108 |
學期 | 1 |
出版年 | 109 |
研究生(中文) | 劉晏汝 |
研究生(英文) | Yen-Ju Liu |
學號 | 605640159 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2019-12-25 |
論文頁數 | 118頁 |
口試委員 |
指導教授
-
韓釗
委員 - 黃琛瑜 委員 - 紀俊臣 |
關鍵字(中) |
臺灣觀光 社群媒體 峰終法則 紮根理論 面部表情分析 文字情緒分析 情感運算 |
關鍵字(英) |
Taiwan Tourism Social media peak-end rule grounded theory Facial Expression Analysis Sentiment analysis Affective Computing |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
如何提升臺灣的觀光價值是一項長期以來受到重視的政策議題。然而,以往的觀光推廣模式卻侷限於傳統思維方式而未能獲致突破性的發展。因此,本研究試圖從峰終法則觀點探討來自不同國家遊客的觀光偏好,並據以設計更符合特定遊客需求的觀光路線。基於以上考量,本研究經由探討日、韓旅客在Instagram貼文中的面部表情及文字情緒,以了解其偏好的觀光景點及其背後所代表的意義與價值偏好。 本研究的主要研究發現有以下三點。首先,日、韓旅客所偏好的景點雖有重複,但日本旅客的偏好以文物為主,而韓國旅客的偏好則以風景為主,顯示其背後所代表的偏好意含並不一樣。第二,日、韓旅客在經營Instagram方面的習性不同,故在貼文中所呈現的內容與方式也有所差異。日本旅客所記錄的旅遊過程大多以臺灣民俗文化的事物為主體,而韓國旅客所記錄的旅遊過程則較偏好以自己為主體,而以風景、文物為背景。第三,在飲食方面,日本旅客較勇於體驗不同的飲食文化及品嚐臺灣小吃,而韓國旅客則偏好臺灣的餐廳用餐,對於陌生的飲食內容較不敢嘗試。本研究的結果顯示,傳統的觀光推廣模式若能改為針對不同國家旅客提供符合其偏好的觀光熱點路線,應有助於提升臺灣的觀光價值。 |
英文摘要 |
How to enhance the value of Taiwan's tourism has long been an important policy issue. However, previous tourism promotion models were often limited to traditional ways of thinking and failed to achieve breakthroughs. Therefore, according to the perspective of the peak-end rule, this study attempts to explore the tourism preferences of tourists from different countries and help to design tourism routes that better meet the needs of specific tourists. Based on the considerations stated above, this study analyzes the facial expressions and text emotions of Japanese and Korean travelers in Instagram posts to understand their preferred sightseeing spots and the underlying meanings and value preferences of those posts. The main research findings of this study are stated as follows. First of all, although there are overlaps in the scenic spots preferred by Japanese and Korean tourists, the preferences of Japanese tourists are mainly cultural relics and local products, while the preferences of Korean tourists are mainly landscapes, indicating that their preferences are not alike. Second, Japanese and Korean travelers have different habits in running Instagram, hence the content and methods presented in the posts are also different. Most of the tourism processes recorded by Japanese tourists are primarily Taiwanese folk culture, while the tourism processes recorded by Korean tourists tend to take themselves as the main body and the scenery and cultural relics as the background. Third, in terms of meals, Japanese tourists are more willing to experience exotic food cultures and taste Taiwanese snacks, while Korean tourists prefer dining in restaurants, and are less willing to try unfamiliar food. The results of this study indicate that if the traditional tourism promotion model can be changed to provide tourist hotspots that meet the preferences of tourists from different countries, it should be able to help enhance the tourism value of Taiwan. |
第三語言摘要 | |
論文目次 |
目錄 第一章 緒論 1 第一節 研究背景與動機 2 第二節 研究目的與問題 5 第三節 研究範圍與研究標的 7 第四節 研究方法 11 第二章 文獻探討 15 第一節 社群媒體的興起與人際網絡的改變 15 第二節 觀察圖像式社群媒體中的情緒 20 第三節 引導行為的推力 30 第三章 日本旅客的偏好 35 第一節 日本旅客偏好的熱門景點 35 第二節 日本旅客的旅遊感受與情緒反應 49 第三節 日本旅客偏好分析與熱點路線 71 第四章 韓國旅客的偏好 78 第一節 韓國旅客偏好的熱門景點 78 第二節 韓國旅客的旅遊感受與情緒反應 89 第三節 韓國旅客偏好分析與熱點路線 105 第五章 結論 110 第一節 主要研究發現 110 第二節 研究限制 112 第三節 未來研究建議 113 參考文獻………………………………………………………………………………………………………………114 圖目錄 圖 1.1 近十年來臺旅客及國民出國人次變化............................4 圖 1.2 民國98~107年日、韓、馬、大陸、港來臺旅客總人次變化............5 圖 1.3 近五年來日、韓來臺旅遊人數.................................12 圖 2.1 社群媒體演變的過程.........................................20 圖 2.2 七種臉部表情的情緒.........................................24 圖 2.3 九種臉部表情的情緒.........................................25 圖 2.4 PANAS量表................................................27 圖 2.5 情緒、記憶與決策...........................................29 圖 2.6 價值函數圖.................................................31 圖 2.7 行為與推力的關係...........................................34 圖 2.8 研究架構...................................................34 圖 3.1 日本旅客偏好景點之統計.....................................36 圖 3.2 九份的知名動畫場景─阿妹茶樓................................37 圖 3.3 九份老街...................................................38 圖 3.4 十分老街與十分車站.........................................39 圖 3.5 101購物中心及裝置藝術.....................................40 圖 3.6 士林夜市...................................................41 圖 3.7 中正紀念堂(一) ............................................42 圖 3.8 中正紀念堂(二) ............................................42 圖 3.9 龍山寺.....................................................43 圖 3.10 故宮博物院入口廣場.........................................44 圖 3.11 臺北車站...................................................45 圖 3.12 便利商店與超市.............................................46 圖 3.13 永康街....................................................47 圖 3.14 中式按摩..................................................48 圖 3.15 九份老街貼文..............................................51 圖 3.16 九份老街面部情緒辨識結果..................................52 圖 3.17 九份老街文字情緒辨識結果..................................52 圖 3.18 九份老街的貼文(偵測不到面部情緒) .........................53 圖 3.19 十分老街貼文..............................................54 圖 3.20 十分老街面部情緒辨識結果..................................55 圖 3.21 十分老街文字情緒辨識結果..................................55 圖 3.22 十分老街面部情緒辨識結果(一) .............................56 圖 3.23 十分老街面部情緒辨識結果(二) .............................56 圖 3.24 101購物中心面部情緒偵測結果..............................58 圖 3.25 101大樓跨年煙火貼文......................................59 圖 3.26 101周邊裝置藝術面部情緒偵測結果..........................59 圖 3.27 日本旅客在士林夜市面部情緒偵測結果........................60 圖 3.28 日本旅客在士林夜市面部情緒偵測結果........................61 圖 3.29 日本旅客在士林夜市面部情緒偵測結果........................61 圖 3.30 日本旅客在中正紀念堂面部情緒偵測結果......................63 圖 3.31 日本旅客在龍山寺面部情緒偵測結果..........................65 圖 3.32 日本旅客在故宮博物院的貼文................................66 圖 3.33 日本旅客在臺北車站的面部偵測結果..........................67 圖 3.34 日本旅客在永康街的面部偵測結果............................68 圖 3.35 日本旅客在中式按摩(養生會館)的面部偵測結果................69 圖 3.36 日本旅客面部偵測綜合結果..................................70 圖 3.37 日本旅客在臺偏好飲食之統計................................72 圖 3.38 日本旅客飲食之偏好........................................73 圖 3.39 日本旅客活動偏好之文字雲..................................74 圖 3.40 日本旅客在臺偏好活動之統計................................74 圖 3.41 日本旅客偏好熱點之路線....................................75 圖 3.42 日本旅客活動偏好之路線....................................75 圖 4.1 韓國旅客偏好景點之統計.....................................79 圖 4.2 九份老街...................................................80 圖 4.3 龍山寺.....................................................80 圖 4.4 野柳風景區.................................................81 圖 4.5 十分老街...................................................82 圖 4.6 淡水紅毛城.................................................83 圖 4.7 西門町.....................................................84 圖 4.8 臺北101(一) ...............................................84 圖 4.9 臺北101(二) ...............................................85 圖 4.10 中正紀念堂................................................86 圖 4.11 士林夜市..................................................87 圖 4.12 便利商店(超市) ...........................................88 圖 4.13 九份老街面部情緒辨識結果..................................89 圖 4.14 九份老街貼文..............................................91 圖 4.15 九份老街貼文..............................................91 圖 4.16 九份老街文字情緒辨識結果..................................91 圖 4.17 龍山寺面部情緒辨識結果....................................93 圖 4.18 野柳風景區面部情緒辨識結果................................94 圖 4.19 十分老街面部情緒辨識結果..................................95 圖 4.20 淡水面部情緒辨識結果......................................97 圖 4.21 西門町面部情緒辨識結果....................................98 圖 4.22 101購物中心面部情緒辨識結果.............................100 圖 4.23 中正紀念堂面部情緒辨識結果...............................101 圖 4.25 便利商店(超市)之代表貼文.................................102 圖 4.26 韓國旅客面部情緒的分佈 ..................................104 圖 4.27 韓國旅客在臺偏好飲食之統計............,,,,,,.............105 圖 4.28 韓國旅客在臺偏好飲食.....................................106 圖 4.29 韓國旅客偏好之文字雲.....................................107 圖 4.30 韓國旅客在臺偏好活動之統計...............................108 圖 4.31 韓國旅客偏好熱點之路線...................................109 圖 4.32 韓國旅客活動偏好之路線...................................109 表目錄 表 1 六種情緒的臉部表情描述…………………………………………………26 |
參考文獻 |
參考文獻 壹、中文書目 Mayer-Schönberger,V.,& Cukier, K. (2012). 大数据时代: 生活, 工作与思维的变革 (周涛譯). 浙江: 浙江人民出版社 Strauss, A.,& Corbin, J. (2001). 質性研究入門:紮根理論研究方法 (吳芝儀、廖梅花譯). 臺灣:濤石. 丁誌魰、陳彥霖(2008). 探討臺灣地方節慶觀光活動永續發展的影響因素. 臺灣地方鄉鎮觀光產業發展與前瞻學術研討會論文集, 頁181–202. 王若帆、胡欣慧(2009). 台灣觀光代言人對國際觀光客在旅遊目的地意象、態度與旅遊意願之影響服務業行銷研討會論文集, 頁253-279. 李勇輝、黃靖文、邱怡嘉(2016). 以消費價值理論與理性行為理論探討Instagram使用者實際行為之研究. 管理研究學報, 16(2), 頁31-57. 李素馨(1996). 觀光新紀元-永續發展的選擇. 戶外遊憩研究, 9(4),頁1-17. 汪育如(2016). 社頭鄉的產業發展與觀光研究. 中興大學歷史學系所學位論文, 頁1-96. 施映羽(2010). 台灣夜市飲食文化體驗模式探討—以高雄六合觀光夜市為例. 高雄餐旅學院台灣飲食文化產業研究所學位論文, 頁1-162. 唐士絜(Producer). (2018, 03.25). 台夜市沒落…不是陸客害的!「這三原因」讓人完全不想逛. 東森新聞. Retrieved from https://news.ebc.net.tw/ 高揚、衛崢、尹會生(2017). 白話大數據與機器學習. 臺北: 碁峰出版社. 陳韻竹、李晶(2013). 臺灣本島自行車運動觀光發展分析. 長榮運動休閒學刊, 7期, 頁99-109. 黃鈞亭(2008). 觀光整合行銷策略之研究-以士林觀光夜市及周邊商店街區為例. 臺北大學公共行政暨政策學系學位論文, 頁1-209. 楊瑪利(2018, 09.03). 倒店潮來襲 台灣歇業中?. 聯合新聞網. from https://udn.com/news/index 葉卉軒(2018, 09.15). 餐飲倒閉潮 老店也難撐. 經濟日報. from https://money.udn.com/money/index 蔡岳融(2014). 臉書經營對旅館績效影響之研究- 以台灣國際觀光飯店為例. 暨南大學經濟學系學位論文. 龍芳(2018, 08.14). 造訪人數創新高 台東熱氣球嘉年華閉幕. 大紀元. from https://www.epochtimes.com/b5/ 蘇昱寧(2010). 南投縣花卉嘉年華觀光發展之研究:協力治理觀點. 中興大學國家政策與公共事務研究所學位論文, 頁1-198. 貳、英文書目 Araújo, C. S., et al. (2014, October). It is not just a picture: revealing some user practices in instagram. In 2014 9th Latin American Web Congress 19-23. IEEE. Bettman, J. R., & Park, C. W. (1980). Effects of prior knowledge and experience and phase of the choice process on consumer decision processes: A protocol analysis. Journal of Consumer Research, 7(3), 234-248. Burrell, G., & Morgan, G. (2017). Sociological paradigms and organisational analysis: Elements of the sociology of corporate life. Routledge. Calvo, R. A., & D'Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on affective computing, 1(1), 18-37. Cambria, E. (2016). Affective computing and sentiment analysis. IEEE Intelligent Systems, 31(2), 102-107. Cambria, E., Das, D., Bandyopadhyay, S., & Feraco, A. (Eds.) (2017). Affective computing and sentiment analysis. In A Practical Guide to Sentiment Analysis, Springer, Cham,1-10. Cambria, E., Wang, H., & White, B. (2014). Guest editorial: Big social data analysis. Knowledge-Based Systems, (69), 1-2. Carmean, D., & Morris, M. (2015). Selfie examinations: Applying computer vision, hashtag scraping and sentiment analysis to finding and interpreting selfies. Online: http://nebula. wsimg. com/27bab6eda0e75b69fcab8a5cdc4e22af. Chang, S.-J. L. (2009). Information research in leisure: implications from an empirical study of backpackers. Library Trends, 57(4), 711-728. Darwin, C., & Prodger, P. (1998). The expression of the emotions in man and animals. New York, NY: Oxford University Press, U.S. Denecke, K. (2008, April). Using sentiwordnet for multilingual sentiment analysis. In 2008 IEEE 24th International Conference on Data Engineering Workshop 507-512. IEEE. Diebold, F. X. (2012). On the Origin(s) and Development of the Term 'Big Data'. PIER Working, No. 12-037. Dolan, R. J. (2002). Emotion, Cognition, and Behavior. Science, 298(5596), 1191-1194. Duggan, M., et al. (2015). Social media update 2014: While Facebook remains the most popular site, other platforms see higher rates of growth. Pew Research Center. Izard, C. E. (1971). The face of emotion (Vol. xii). East Norwalk, CT: Appleton-Century-Crofts. Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48(4), 384-392. Ekman, P., Friesen, W. V., & Hager, J. C. (2002). Facial action coding system: The manual on CD ROM. A Human Face, Salt Lake City, 77-254. El Kaliouby, R., & England, A. (2014). U.S. Patent Application No. 14/328,554. Ferrara, E., et al. (2014). Online popularity and topical interests through the lens of instagram. Proceedings of the 25th ACM conference on Hypertext and social media, 24-34. Fuduric, M., & Mandelli, A. (2014). Communicating social media policies: evaluation of current practices. Communication Management, 18(2), 158-175. Highfield, T., & Leaver, T. (2016). Instagrammatics and digital methods: studying visual social media, from selfies and GIFs to memes and emoji. Communication Research and Practice, 2(1), 47-62. Hu, Y., Manikonda, L., & Kambhampati, S. (2014, May). What we instagram: A first analysis of instagram photo content and user types. In Eighth International AAAI conference on weblogs and social media. Kahneman, D. (2010). Daniel Kahneman: The riddle of experience vs. memory: Ted. Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Macmillan. Kahneman, D., et al. (1993). When more pain is preferred to less: Adding a better end. Psychological Science, 4(6), 401-405. Kahneman, D., & Riis, J. (2005). Living, and thinking about it: Two perspectives on life. The Science of Well-Being, 1, 285-304. Kahneman, D., & Thaler, R. H. (2006). Anomalies: Utility maximization and experienced utility. Journal of Economic Perspectives, 20(1), 221-234. Kaplan, R. L., et al. (2016). Emotion and false memory. Emotion Review, 8(1), 8-13. Lazaridou, K. et al. (2017). Museums+ Instagram. In V. Katsoni, A. Upadhya & A. Stratigea (Eds.), Tourism, Culture and Heritage in a Smart Economy, Proceedings of the 3rd International Conference IACuDiT, Athens, Greece, 73-84. Leaver, T., & Highfield, T. (2016). Instagrammatics and digital methods: studying visual social media, from selfies and GIFs to memes and emoji. Communication Research and Practice 2(1), 47-62. Lindquist, K. A. et al. (2016). Language and emotion: Putting words into feelings and feelings into words. Handbook of emotions, 579-594. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167. Mathieu, Y. Y. (2005). Annotation of Emotions and Feelings in Texts. In J. Tao, T. Tan & R. W. Picard (Eds.), Affective Computing and Intelligent Interaction. 350-357, Heidelberg,Berlin: Springer. Matsumoto, D.,et al. (2008). Facial expressions of emotion. Handbook of emotions, 3, 211-234. Mazursky, D. (1989). Past experience and future tourism decisions. Annals of Tourism Research, 16(3), 333-344. McNely, B. J. (2012, October). Shaping organizational image-power through images: Case histories of Instagram. In 2012 IEEE International Professional Communication Conference 1-8. IEEE. Milgram, S. (1967). Six degrees of separation. Psychology Today, 2, 60-64. Minsky, M. (2007). The emotion machine: Commonsense thinking, artificial intelligence, and the future of the human mind. New York, NY: Simon and Schuster. Miron-Shatz, T., Stone, A., & Kahneman, D. (2009). Memories of yesterday’s emotions: Does the valence of experience affect the memory-experience gap? Emotion, 9(6), 885. Monnappa, A. (2019). How Facebook is Using Big Data - The Good, the Bad, and the Ugly. Retrieved from https://www.simplilearn.com/ Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. Penni, J. (2017). The future of online social networks (OSN): A measurement analysis using social media tools and application. Telematics and Informatics, 34(5), 498-517. Picard, R. W. (2000). Affective computing. Boston, MA: MIT press. Picard, R. W., & Healey, J. (1997). Affective wearables. Personal Technologies, 1(4), 231-240. Tao, J., Tan, T., & Picard, R. W. (Eds.). (2005). Affective Computing and Intelligent Interaction: First International Conference, ACII 2005, Beijing, China, October 22-24, 2005, Proceedings (Vol. 3784). Springer. Regina, L. (2018). Social Media: How to Engage, Share, and Connect. Lanham, MD: Rowman & Littlefield. Salleh, S., Hashima, N. H., & Murphy, J. (2015). Instagram marketing: a content analysis of top Malaysian restaurant brands. E-Review of Tourism Research, 6, 1-5. Schuller, B.,et al. (2011, October). Avec 2011–the first international audio/visual emotion challenge. In International Conference on Affective Computing and Intelligent Interaction 415-424. Berlin, Heidelberg : Springer. Schuller, B., et al. (2012, October). AVEC 2012: the continuous audio/visual emotion challenge. In Proceedings of the 14th ACM international conference on Multimodal interaction 449-456. ACM. Sheldon, P., & Bryant, K. (2016). Instagram: Motives for its use and relationship to narcissism and contextual age. Computers in Human Behavior, 58, 89-97. Stiles, D. R. (2004). Pictorial representation. In C. Cassell & G. Symon (Eds.), Essential guide to qualitative methods in organizational research 127-139. London, U.K.: SAGE. Speziale, H. S., Streubert, H. J., & Carpenter, D. R. (2011). Qualitative research in nursing: Advancing the humanistic imperative. Phildelphia, PA: Lippincott Williams & Wilkins. Thaler, R. H., & Sunstein, C. R. (2009). Nudge: Improving decisions about health, wealth, and happiness. New Haven, CT: Yale University Press. Toffler, A., & Alvin, T. (1980). The third wave (Vol. 484). New York, NY: Bantam. Travel, W., & Council, T. (2018). Travel & Tourism: Economic Impact 2018 Taiwan: World Travel & Tourism Council . London, UK: WTTC. Urry, J. (2003). Social networks, travel and talk. The British journal of sociology, 54(2), 155-175. Van Der Schalk, J., et al. (2011). Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES). Emotion, 11(4), 907. Van Raaij, W. F., & Francken, D. A. (1984). Vacation decisions, activities, and satisfactions. Annals of Tourism Research, 11(1), 101-112. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of personality and social psychology, 54(6), 1063-1070. Youtie, J., Porter, A. L., & Huang, Y. (2017). Early social science research about Big Data. Science and Public Policy, 44(1), 65-74. Zeng, Z., Pantic, M., & Huang, T. S. (2009). Emotion recognition based on multimodal information. In Affective Information Processing 241-265. London, UK: Springer. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信