系統識別號 | U0002-1508202418020400 |
---|---|
DOI | 10.6846/tku202400672 |
論文名稱(中文) | 微波輔助合成溫感性高分子並以靜電紡絲製備纖維膜 |
論文名稱(英文) | Microwave-Assisted Synthesis of Thermosensitive Polymers for Fabrication of Fiber Membranes via Electrospinning |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 化學工程與材料工程學系碩士班 |
系所名稱(英文) | Department of Chemical and Materials Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 陳品妤 |
研究生(英文) | Pin-Yu Chen |
學號 | 611400556 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-07-18 |
論文頁數 | 137頁 |
口試委員 |
指導教授
-
董崇民(tmdon@mail.tku.edu.tw)
口試委員 - 郭志宇 口試委員 - 黃意真 |
關鍵字(中) |
微波合成 溫度敏感性 酸鹼敏感性 靜電紡絲 |
關鍵字(英) |
Microwave Thermosensitive pH-sensitive Electrospinning |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本研究以氮-異丙基丙烯醯胺(N-isopropylacrylamide,NIPAAm)作為溫感性高分子主要單體,而為了調控相轉移溫度,添加第二種單體聚乙二醇甲醚丙烯酸酯(Poly(ethylene glycol) methyl ether acrylate,OEGA),不僅可調節相轉移溫度,同時具有免於巨噬細胞的攻擊而增加生物相容性。首先將NIPAAm和OEGA溶解在DMF中,加入2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸(2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid,DMP)作為鏈移轉劑(Chain transfer agent,CTA)以及偶氮二異丁腈(2,2′-Azobis(2-methylpropionitrile,AIBN)作為起始劑進行可逆加成-斷裂鏈轉移聚合(Reversible additional fragmentation chain transfer polymerization,RAFT)活性自由基聚合P(NIPAAm-r-OEGA)共聚物。當添加第三個單體甲基丙烯酸(Methacrylic Acid,MAA)時,可合成出共聚物P(NIPAAm-r-OEGA-r-MAA),可同時擁有溫度和pH敏感型的共聚物。 將合成完的P(NIPAAm-r-OEGA)和P(NIPAAm-r-OEGA-r-MAA)共聚物藉由FTIR、NMR以及GPC來進行結構分析,並使用紫外光-可見光分光光譜儀測量共聚物在不同pH值環境下的霧點溫度(Cloud point),結果發現親水性單體OEGA的含量增加,其霧點溫度也會隨之上升,隨後再進行粒徑分析,在高溫時,共聚物溶液中的顆粒隨著OEGA的增加逐漸變大。再進行熱性質分析,判斷高分子之熱裂解溫度和熱穩定性。隨後利用H2O/EtOH (1/9)作為混合溶劑,加入15 % (w/v)的P(NIPAAm-r-OEGA)共聚物,薑黃素作為模型藥物和具有生物相容性的水溶性高分子聚環氧乙烷(PEO)(3、4、5 %)來增加電紡溶液黏度,利用靜電紡絲技術製備出纖維直徑在奈米至次微米等級的纖維膜。加入3 %PEO 的電紡纖維膜的纖維直徑為998±70 nm;加入4 %PEO的電紡纖維膜的纖維直徑為1.5±163 μm;加入5 %PEO的電紡纖維膜的纖維直徑為2.8±251 μm,隨著溶液濃度的增加,黏度也會增大,導致纖維的平均直徑變大。 |
英文摘要 |
In this study, N-isopropylacrylamide (NIPAAm) was used as the main monomer for temperature-sensitive polymers. To regulate the phase transition temperature, a second monomer, poly(ethylene glycol) methyl ether acrylate (OEGA), was added. This not only adjusts the phase transition temperature but also enhances biocompatibility by avoiding macrophage attack. First, NIPAAm and OEGA are dissolved in DMF, and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DMP) is added as the chain transfer agent (CTA) along with 2,2′-azobis(2-methylpropionitrile) (AIBN) as the initiator to conduct reversible addition-fragmentation chain transfer polymerization (RAFT) and synthesize the P(NIPAAm-r-OEGA) copolymer. When a third monomer, methacrylic acid (MAA), is added, the copolymer P(NIPAAm-r-OEGA-r-MAA), which is sensitive to both temperature and pH, can be synthesized. The synthesized P(NIPAAm-r-OEGA) and P(NIPAAm-r-OEGA-r-MAA) copolymers were subjected to structural analysis using FTIR, NMR, and GPC. The cloud point temperature of the copolymers in different pH environments was measured using a UV-Vis spectrophotometer. The results showed that as the content of the hydrophilic monomer OEGA increased, the cloud point temperature also increased. Subsequent particle size analysis revealed that the particle size in the copolymer solution increased with higher OEGA content at high temperatures. Thermal analysis was then conducted to determine the thermal degradation temperature and thermal stability of the polymers. Using a mixed solvent of H2O/EtOH (1/9), 15 % (w/v) P(NIPAAm-r-OEGA) copolymer was added, with curcumin as a model drug and water-soluble, biocompatible polyethylene oxide (PEO) (3 %, 4 %, 5 %) to increase the viscosity of the electrospinning solution. Electrospinning technology was used to produce fiber membranes with diameters ranging from nano to submicron scale. The fiber diameter of electrospun membranes with 3 % PEO was 998±70 nm; with 4 % PEO was 1.5±163 μm; and with 5 % PEO was 2.8±251 μm. As the solution concentration increased, viscosity also increased, resulting in a larger average fiber diameter. |
第三語言摘要 | |
論文目次 |
目錄 V 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1.1前言 1 1.2研究動機 3 第二章 文獻回顧 4 2.1可逆加成-斷裂鏈轉移聚合法RAFT 4 2.2環境敏感型高分子 9 2.3溫度敏感型高分子 9 2.4酸鹼敏感型高分子 12 2.5微波合成簡介 16 2.6靜電紡絲 20 2.6.1靜電紡絲介紹 20 2.6.2靜電紡絲應用 23 2.7創傷敷材 26 2.7.1皮膚構造 26 2.7.2傷口形成 27 2.7.3傷口敷料發展及種類 31 第三章 實驗 33 3.1實驗架構 33 3.2實驗藥品 34 3.3實驗儀器 37 3.4實驗步驟 41 3.4.1微波加熱合成裝置操作 41 3.4.2微波加熱活性自由基合成PNIPAAm高分子 46 3.4.2.1 PNIPAAm高分子單體轉化率 48 3.4.3微波加熱活性自由基合成P(NP-r-OEGA)嵌段共聚物 48 3.4.3.1 P(NP-r-OEGA)嵌段共聚物單體轉化率 50 3.4.4微波加熱活性自由基合成P(NP-r-OEGA-r-MAA)嵌段共聚物 51 3.4.4.1 P(NP-r-OEGA-r-MAA)嵌段共聚物單體轉化率 53 3.4.5靜電紡絲溶液與靜電紡絲纖維膜製備 55 3.5材料之結構鑑定 56 3.5.1共聚物之結構分析FTIR 56 3.5.2共聚物之結構分析NMR 56 3.5.3共聚物之結構分析GPC 56 3.6材料性質分析 57 3.6.1 P(NP-r-OEGA)共聚物相轉變霧點溫度(Cloud point)之量測 57 3.6.2 P(NP-r-OEGA)與P(NP-r-OEGA-r-MAA)共聚物相轉變霧點溫度(Cloud point)之量測 58 3.6.3熱性質分析(TGA) 58 3.6.4熱性質分析(DSC) 58 3.7共聚物之粒徑大小及分佈 59 3.8靜電紡絲纖維分析(SEM) 59 3.9藥物釋放之研究 59 第四章 結果與討論 60 4.1微波合成PNIPAAm高分子 60 4.1.1 PNIPAAm高分子之結構分析(FTIR) 60 4.1.2 PNIPAAm高分子之結構分析(NMR) 61 4.1.3 PNIPAAm高分子相轉變溫度 64 4.2微波合成P(NP-r-OEGA)共聚物 66 4.2.1合成P(NP-r-OEGA)共聚物與其分子量 66 4.2.2 P(NP-r-OEGA)共聚物之結構分析(FTIR) 69 4.2.3 P(NP-r-OEGA)共聚物之結構分析(NMR) 71 4.2.4 P(NP-r-OEGA)共聚物之分子量(GPC) 78 4.2.5 P(NP-r-OEGA)共聚物相轉變霧點溫度(Cloud point) 79 4.2.6 P(NP-r-OEGA)共聚物在不同溫度下之粒徑分析 85 4.2.7 P(NP-r-OEGA)共聚物之熱性質分析(TGA) 88 4.2.8 P(NP-r-OEGA)共聚物之熱性質分析(DSC) 91 4.3微波合成P(NP-r-OEGA-r-MAA)共聚物 92 4.3.1合成P(NP-r-OEGA-r-MAA)共聚物與其分子量 92 4.3.2 P(NP-r-OEGA-r-MAA)共聚物之結構分析(FTIR) 95 4.3.3 P(NP-r-OEGA-r-MAA)共聚物之結構分析(NMR) 97 4.3.4 P(NP-r-OEGA-r-MAA)共聚物之分子量(GPC) 103 4.3.5 P(NP-r-OEGA-r-MAA)共聚物相轉變霧點溫度(Cloud point) 104 4.3.6 P(NP-r-OEGA-r-MAA)共聚物在高溫中不同pH值下之粒徑分析 112 4.3.7 P(NP-r-OEGA-r-MAA)共聚物之熱性質分析(TGA) 117 4.3.8 P(NP-r-OEGA-r-MAA)共聚物之熱性質分析(DSC) 119 4.4 P(NP-r-OEGA)纖維膜之性質測試 120 4.4.1 電紡溶液性質測試 120 4.4.2電紡纖維型態(SEM) 123 第五章 結論 127 第六章 參考文獻 128 圖目錄 圖2-1 一般RAFT試劑結構(三硫代碳酸酯 Z = SR,二硫代酯 Z = 烷基或芳基,二硫代氨基甲酸酯 Z = NR2,黄原酸酯 Z = O-烷基,R = 烷基或氫)[10] 4 圖2-2硫代羰基硫代RAFT劑及自由基加成中間體的結構特徵[11] 5 圖2-3 RAFT試劑種類[9] 6 圖2-4 RAFT Z基團及其最適合的單體[12] 7 圖2-5 RAFT R基團及其最適合的單體[12] 7 圖2-6 RAFT反應機制圖[17] 8 圖2-7環境敏感型高分子之潛在刺激及反應[23] 9 圖2-8 PNIPAAm高分子結構[30] 11 圖2-9溫度敏感型高分子之LCST變化[30] 11 圖2-10 LCST與UCST型高分子差異示意圖[30] 11 圖2-11電磁波譜 (通過整合操作系統、綠色化學反應、特定的加熱技術和化學反應,展現了微波化學的系統化應用方法)[43] 16 圖2-12 (a) 傳統加熱合成 (b) 微波加熱合成示意圖[47] 18 圖2-13加熱DMF時獲得的不同溫度曲線圖[49] 18 圖2-14 (a)垂直 (b)水平 靜電紡絲裝置示意圖[53] 21 圖2-15在水中的2 %聚乙烯醚(分子量 = 920 kg/mol)的錐形噴射圖[58]。D = 45 cm。((a) Q = 0.02 mL/min,E = 0.282 kV/cm;(b) Q = 0.10 mL/min,E = 0.344 kV/cm;(c) Q = 0.50 mL/min,E = 0.533 kV/cm;(d) Q = 1.00 mL/min,E = 0.716 kV/cm。) 22 圖2-16用於生物醫學應用的合成聚合物電紡絲的化學結構[60] 24 圖2-17皮膚組織示意圖[65] 27 圖2-18正常傷口癒合階段的時間線[69] 28 圖2-19傷口癒合過程示意圖[70] 29 圖3-1實驗架構圖 33 圖3-2微波加熱合成反應組裝配件 42 圖3-3微波加熱合成反應組裝後內部裝置圖 42 圖3-4微波加熱合成反應裝置之操作頁面1 43 圖3-5微波加熱合成反應裝置之操作頁面2 43 圖3-6微波加熱合成反應裝置之操作頁面3 44 圖3-7微波加熱合成反應裝置之操作頁面4 44 圖3-8微波加熱合成反應裝置之操作頁面5 45 圖3-9利用微波加熱合成反應PNIPAAm高分子之流程圖 46 圖3-10微波加熱反應裝置圖 47 圖3-14利用微波加熱合成反應P(NP-r-OEGA)共聚物之流程圖 49 圖3-18利用微波加熱合成反應P(NP-r-OEGA-r-MAA)共聚物流程圖 51 圖3-19靜電紡絲流程圖 55 圖4-1 (a) AIBN、(b) DMP、(c) PNIPAAm高分子之紅外線吸收光譜圖 61 圖4-2 PNIPAAm高分子之1H-NMR光譜圖 62 圖4-3 POEGA高分子之1H-NMR光譜圖 63 圖4-4 PNIPAAm高分子水溶液(3.0 wt%)在λ=450 nm下穿透率對溫度的關係圖 65 圖4-5 PNIPAAm高分子水溶液(3.0 wt%)在λ=450 nm下穿透率對溫度一次微分的關係圖 65 圖4-6合成P(NP-r-OEGA)共聚物反應結構式 67 圖4-7 NIPAAm和P(NP-r-OEGA)共聚物之紅外線吸收光譜圖 70 圖4-8 P(NP-r-OEGA)共聚物之結構式 71 圖4-9 P(NP98-r-OEGA2)共聚物之1H-NMR光譜圖 73 圖4-10 P(NP96-r-OEGA4)共聚物之1H-NMR光譜圖 74 圖4-11 P(NP94-r-OEGA6)共聚物之1H-NMR光譜圖 75 圖4-12 P(NP92-r-OEGA8)共聚物之1H-NMR光譜圖 76 圖4-13 P(NP-r-OEGA)共聚物之FOEGA,NMR和fOEGA,NMR線性迴歸圖 77 圖4-14 不同單體入料莫耳比所合成之P(NP-r-OEGA)共聚物之GPC色譜圖,微波加熱合成得為75 ℃、3小時。(([NP]+[OEGA])/([DMP])=100/1) 78 圖4-15不同OEGA比例的P(NP-r-OEGA)共聚物在λ=450 nm下穿透率對溫度的關係圖,樣品濃度為30 mg/mL超純水 80 圖4-16不同OEGA比例的P(NP-r-OEGA)共聚物在λ=450 nm下穿透率對溫度一次微分的關係圖 80 圖4-17 P(NP-r-OEGA)共聚物的OEGA莫爾比例變化與Cloud point關係圖 81 圖4-18不同比例P(NP-r-OEGA)共聚物之穿透率(λ=450 nm)對溫度的關係圖,樣品濃度為30 mg/mL PBS 5.5 82 圖4-19不同比例P(NP-r-OEGA)共聚物之穿透率(λ=450 nm)對溫度一次微分的關係圖,樣品濃度為30 mg/mL PBS 5.5 82 圖4-20不同比例P(NP-r-OEGA)共聚物之穿透率(λ=450 nm)對溫度的關係圖,樣品濃度為30 mg/mL PBS 7.4 83 圖4-21不同比例P(NP-r-OEGA)共聚物之穿透率(λ=450 nm)對溫度一次微分的關係圖,樣品濃度為30 mg/mL PBS 7.4 83 圖4-22 P(NP-r-OEGA)共聚物分別在超純水和PBS緩衝溶液的不同OEGA莫爾比例變化與Cloud point關係圖 84 圖4-23 PNIPAAm高分子溶解在超純水中,45 ℃下之粒徑分佈圖 85 圖4-24 P(NP98-r-OEGA2)共聚物溶解在超純水中,45 ℃下之粒徑分佈圖 86 圖4-25 P(NP96-r-OEGA4)共聚物溶解在超純水中,45 ℃下之粒徑分佈圖 86 圖4-26 P(NP94-r-OEGA6)共聚物溶解在超純水中,45 ℃下之粒徑分佈圖 86 圖4-27 P(NP92-r-OEGA8)共聚物溶解在超純水中,45 ℃下之粒徑分佈圖 86 圖4-28 P(NP-r-OEGA)共聚物的OEGA莫爾比例變化與粒徑分佈關係圖 87 圖4-29 PNIPAAm及POEGA高分子之熱重損失圖 88 圖4-30 PNIPAAm及POEGA高分子之熱重損失微分圖 89 圖4-31不同比例P(NP-r-OEGA)共聚物之熱重損失圖 89 圖4-32不同比例P(NP-r-OEGA)共聚物之熱重損失微分圖 90 圖4-33不同比例P(NP-r-OEGA)共聚物之二次升溫曲線圖 91 圖4-34合成P(NP-r-OEGA-r-MAA)共聚物反應結構式 92 圖4-35 (a) PNIPAAm、(b) P(NP-r-OEGA)、(c) P(NP-r-OEGA-r-MAA)共聚物之紅外線吸收光譜圖 95 圖4-36 P(NP-r-OEGA-r-MAA)共聚物在不同比例之紅外線吸收光譜圖 96 圖4-37 P(NP-r-OEGA-r-MAA)共聚物之結構式 97 圖4-38 P(NP95-r-OEGA4-r-MAA1)共聚物之1H-NMR光譜圖 99 圖4-39 P(NP94-r-OEGA4-r-MAA2)共聚物之1H-NMR光譜圖 100 圖4-40 P(NP93-r-OEGA4-r-MAA3)共聚物之1H-NMR光譜圖 101 圖4-41 P(NP92-r-OEGA4-r-MAA4)共聚物之1H-NMR光譜圖 102 圖4-42不同單體入料莫耳比所合成之P(NP-r-OEGA-r-MAA)共聚物不同比例之GPC色譜圖,微波加熱合成得為75 ℃、3小時。([NP+OEGA])/([DMP])=100/1 103 圖4-43不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度的關係圖,樣品濃度為30 mg/mL,pH 6.5水溶液 106 圖4-44不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度一次微分的關係圖,樣品濃度為30 mg/mL,pH 6.5水溶液 106 圖4-45不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度的關係圖,樣品濃度為30 mg/mL,pH 2水溶液 107 圖4-46不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度一次微分的關係圖,樣品濃度為30 mg/mL,pH 2水溶液 107 圖4-47不同比例P(NP-r-OEGA-r-MAA)共聚物在pH 6.5和pH 2水溶液中的Cloud point變化 108 圖4-48 不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度的關係圖,樣品濃度為30 mg/mL PBS 5.5 108 圖4-49 不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度一次微分的關係圖,樣品濃度為30 mg/mL PBS 5.5 109 圖4-50 不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度的關係圖,樣品濃度為30 mg/mL PBS 7.4 109 圖4-51 不同比例P(NP-r-OEGA-r-MAA)共聚物之穿透率(λ=450 nm)對溫度一次微分的關係圖,樣品濃度為30 mg/mL PBS 7.4 110 圖4-52不同比例P(NP-r-OEGA-r-MAA)共聚物在PBS 5.5和PBS 7.4緩衝溶液中的Cloud point變化 110 圖4-53 P(NP96-r-OEGA4-r-MAA0)共聚物溶解在超純水中(pH 2),45 ℃下之粒徑分佈圖 113 圖4-54 P(NP96-r-OEGA4-r-MAA0)共聚物溶解在超純水中(pH 6.5),45 ℃下之粒徑分佈圖 113 圖4-55 P(NP95-r-OEGA4-r-MAA1)共聚物溶解在超純水中(pH 2),45 ℃下之粒徑分佈圖 113 圖4-56 P(NP95-r-OEGA4-r-MAA1)共聚物溶解在超純水中(pH 6.5),45 ℃下之粒徑分佈圖 114 圖4-57 P(NP94-r-OEGA4-r-MAA2)共聚物溶解在超純水中(pH 2),45 ℃下之粒徑分佈圖 114 圖4-58 P(NP94-r-OEGA4-r-MAA2)共聚物溶解在超純水中(pH 6.5),45 ℃下之粒徑分佈圖 114 圖4-59 P(NP93-r-OEGA4-r-MAA3)共聚物溶解在超純水中(pH 2),45 ℃下之粒徑分佈圖 115 圖4-60 P(NP93-r-OEGA4-r-MAA3)共聚物溶解在超純水中(pH 6.5),45 ℃下之粒徑分佈圖 115 圖4-61 P(NP92-r-OEGA4-r-MAA4)共聚物溶解在超純水中(pH 2),45 ℃下之粒徑分佈圖 115 圖4-62 P(NP92-r-OEGA4-r-MAA4)共聚物溶解在超純水中(pH 6.5),45 ℃下之粒徑分佈圖 116 圖4-63不同比例P(NP-r-OEGA-r-MAA)共聚物之熱重損失圖 117 圖4-64不同比例P(NP-r-OEGA-r-MAA)共聚物之熱重損失微分圖 118 圖4-65不同比例P(NP-r-OEGA-r-MAA)共聚物之二次升溫曲線圖 119 圖4-66 15 % (w/v) P(NP-r-OEGA)/Cur (H2O/EtOH=1 mL/9 mL)電紡纖維膜之SEM圖(流速0.8 mL/hr;工作距離15 cm;電壓11 kV) 121 圖4-67 PEO在室溫下不同比例的H2O/EtOH溶解度狀態 121 圖4-68在不同溫度下薑黃素在溶劑中的溶解度 (█:乙醇,●:正丙醇,▲:異丙醇,▼:丙二醇,◆:水)[82] 122 圖4-69 15 % (w/v) P(NP-r-OEGA)/3 %PEO (H2O/EtOH=1 mL/9 mL)電紡纖維膜之SEM圖(流速0.8 mL/hr;工作距離15 cm;電壓11 kV) 124 圖4-70 15 % (w/v) P(NP-r-OEGA)/3 %PEO (H2O/EtOH=1 mL/9 mL)電紡纖維膜之纖維直徑分佈圖(流速0.8 mL/hr;工作距離15 cm;電壓11 kV) 124 圖4-71 15 % (w/v) P(NP-r-OEGA)/4 %PEO (H2O/EtOH=1 mL/9 mL)電紡纖維膜之SEM圖(流速0.8 mL/hr;工作距離15 cm;電壓11 kV) 125 圖4-72 15 % (w/v) P(NP-r-OEGA)/4 %PEO (H2O/EtOH=1 mL/9 mL)電紡纖維膜之纖維直徑分佈圖(流速0.8 mL/hr;工作距離15 cm;電壓11 kV) 125 圖4-73 15 % (w/v) P(NP-r-OEGA)/5 %PEO (H2O/EtOH=1 mL/9 mL)電紡纖維膜之SEM圖(流速0.8 mL/hr;工作距離15 cm;電壓11 kV) 126 圖4-74 15 % (w/v) P(NP-r-OEGA)/5 %PEO (H2O/EtOH=1 mL/9 mL)電紡纖維膜之纖維直徑分佈圖(流速0.8 mL/hr;工作距離15 cm;電壓11 kV) 126 表目錄 表2-1常見的酸鹼敏感性高分子結構[38] 13 表2-2常見的鹼性聚陰離子之酸鹼敏感性高分子結構[38] 14 表2-3不同溶劑的損失正切(tan δ)[50] 19 表2-4用於靜電紡絲的聚合物及其溶劑 25 表3-1合成P(NP-r-OEGA)共聚物之入料比 49 表3-2合成P(NP-r-OEGA-r-MAA)共聚物之入料比 52 表4-1 PNIPAAm高分子1H-NMR光譜之吸收峰位置 62 表4-2 POEGA高分子1H-NMR光譜之吸收峰位置 64 表4-3 P(NP-r-OEGA)共聚物在不同單體入料比例之合成反應配方 68 表4-4 微波合成P(NP-r-OEGA)共聚物在不同入料比(fOEGA)下之共聚物組成(FOEGA)、轉化率及分子量 68 表4-5 傳統加熱方式以RAFT合成P(NP-r-OEGA)共聚物在不同入料比(fOEGA)下之轉化率及分子量(反應條件:([NP+OEGA])/([DMP])=257.7/1)[79] 69 表4-6 P(NP-r-OEGA)共聚物1H-NMR光譜之吸收峰位置 72 表4-7 P(NP-r-OEGA)共聚物水溶液之霧點溫度(3 wt%) 81 表4-8 PNIPAAm與P(NP-r-OEGA)共聚物分別在超純水和PBS緩衝溶液的霧點溫度(3 wt%) 84 表4-9 P(NP-r-OEGA)共聚物在不同溫度水溶液中之粒徑大小與PDI 87 表4-10不同比例P(NP-r-OEGA)共聚物之熱裂解溫度 90 表4-11 P(NP-r-OEGA-r-MAA)共聚物在不同單體入料比例之合成反應配方 93 表4-12 微波合成P(NP-r-OEGA-r-MAA)共聚物在不同入料比例下之聚合度、轉化率及分子量 94 表4-13 P(NP-r-OEGA-r-MAA)共聚物1H-NMR光譜之吸收峰位置 98 表4-14 P(NP-r-OEGA-r-MAA)共聚物之入料比、分子量及PDI 104 表4-15不同比例P(NP-r-OEGA-r-MAA)共聚物在不同pH溶液中的霧點溫度變化 (3 wt%) 111 表4-16不同比例P(NP-r-OEGA-r-MAA)共聚物溶解在不同pH值的超純水中之粒徑大小與PDI 116 表4-17不同比例P(NP-r-OEGA-r-MAA)共聚物之熱裂解溫度 118 表4-18 PEO在室溫下不同比例的H2O/EtOH 121 |
參考文獻 |
1. Fahimirad, S., H. Abtahi, P. Satei, E. Ghaznavi-Rad, M. Moslehi, and A. Ganji, Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydrate polymers, 2021. 259: p. 117640. 2. Li, H., G.R. Williams, J. Wu, H. Wang, X. Sun, and L.-M. Zhu, Poly (N-isopropylacrylamide)/poly (l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Materials Science and Engineering: C, 2017. 79: p. 245-254. 3. Erci, F. and F.B. Sariipek, Fabrication of antimicrobial poly (3-hydroxybuthyrate)/poly (ε-caprolactone) nanofibrous mats loaded with curcumin/β-cylodextrin inclusion complex as potential wound dressing. Journal of Drug Delivery Science and Technology, 2023. 89: p. 105023. 4. Zhang, X.-Z., D.-Q. Wu, and C.-C. Chu, Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials, 2004. 25(17): p. 3793-3805. 5. Hou, L., K. Ma, Z. An, and P. Wu, Exploring the volume phase transition behavior of POEGA-and PNIPAM-based core–shell nanogels from infrared-spectral insights. Macromolecules, 2014. 47(3): p. 1144-1154. 6. Yang, X., X. Wang, and C. Wang, The preparation and aggregation behaviors of comb-like thermally-responsive fluoropolymer. Journal of Polymer Research, 2018. 25: p. 1-7. 7. Liu, G., Q. Qiu, and Z. An, Development of thermosensitive copolymers of poly (2-methoxyethyl acrylate-co-poly (ethylene glycol) methyl ether acrylate) and their nanogels synthesized by RAFT dispersion polymerization in water. Polymer Chemistry, 2012. 3(2): p. 504-513. 8. 林佩儀, 氮-異丙基丙烯醯胺和甲基丙烯酸共聚合物的二氧化碳應答行為之研究. 2016, 撰者. 9. Moad, G., E. Rizzardo, and S.H. Thang, RAFT polymerization and some of its applications. Chemistry–An Asian Journal, 2013. 8(8): p. 1634-1644. 10. Willcock, H. and R.K. O'Reilly, End group removal and modification of RAFT polymers. Polymer Chemistry, 2010. 1(2): p. 149-157. 11. Moad, G., E. Rizzardo, and S.H. Thang, Living radical polymerization by the RAFT process–a third update. Australian Journal of Chemistry, 2012. 65(8): p. 985-1076. 12. Fairbanks, B.D., P.A. Gunatillake, and L. Meagher, Biomedical applications of polymers derived by reversible addition–fragmentation chain-transfer (RAFT). Advanced drug delivery reviews, 2015. 91: p. 141-152. 13. Chong, Y., J. Krstina, T.P. Le, G. Moad, A. Postma, E. Rizzardo, and S.H. Thang, Thiocarbonylthio compounds [sc (ph) s− r] in free radical polymerization with reversible addition-fragmentation chain transfer (raft polymerization). Role of the free-radical leaving group (r). Macromolecules, 2003. 36(7): p. 2256-2272. 14. Rizzardo, E. and S.H. Thang, Thiocarbonylthio compounds [SdC (Ph) SR] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules, 2003. 36: p. 2256-2272. 15. Keddie, D.J., G. Moad, E. Rizzardo, and S.H. Thang, RAFT agent design and synthesis. Macromolecules, 2012. 45(13): p. 5321-5342. 16. 陳世基, 王富生, and 彭之皓, 活性/可控自由基聚合反應. 化工, 2016. 63(3): p. 25-45. 17. Smith, A.E., X. Xu, and C.L. McCormick, Stimuli-responsive amphiphilic (co) polymers via RAFT polymerization. Progress in polymer science, 2010. 35(1-2): p. 45-93. 18. Almeida, H., M.H. Amaral, and P. Lobão, Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. Journal of Applied Pharmaceutical Science, 2012(Issue): p. 01-10. 19. Liu, F. and M.W. Urban, Recent advances and challenges in designing stimuli-responsive polymers. Progress in polymer science, 2010. 35(1-2): p. 3-23. 20. Saini, R.K., L.P. Bagri, A.K. Bajpai, and A. Mishra, Responsive polymer nanoparticles for drug delivery applications, in Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1. 2018, Elsevier. p. 289-320. 21. Bawa, P., V. Pillay, Y.E. Choonara, and L.C. Du Toit, Stimuli-responsive polymers and their applications in drug delivery. Biomedical materials, 2009. 4(2): p. 022001. 22. Wang, Q., Smart materials for tissue engineering: fundamental principles. 2016: Royal Society of Chemistry. 23. Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced drug delivery reviews, 2006. 58(15): p. 1655-1670. 24. Qiao, P., Q. Niu, Z. Wang, and D. Cao, Synthesis of thermosensitive micelles based on poly (N-isopropylacrylamide) and poly (l-alanine) for controlled release of adriamycin. Chemical engineering journal, 2010. 159(1-3): p. 257-263. 25. Heskins, M. and J.E. Guillet, Solution properties of poly (N-isopropylacrylamide). Journal of Macromolecular Science—Chemistry, 1968. 2(8): p. 1441-1455. 26. Zhang, X.-Z. and R.-X. Zhuo, Dynamic properties of temperature-sensitive poly (N-isopropylacrylamide) gel cross-linked through siloxane linkage. Langmuir, 2001. 17(1): p. 12-16. 27. Chung, J., M. Yokoyama, T. Aoyagi, Y. Sakurai, and T. Okano, Effect of molecular architecture of hydrophobically modified poly (N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. Journal of Controlled Release, 1998. 53(1-3): p. 119-130. 28. Shang, T., C.-d. Wang, L. Ren, X.-h. Tian, D.-h. Li, X.-b. Ke, M. Chen, and A.-q. Yang, Synthesis and characterization of NIR-responsive Au rod@ pNIPAAm-PEGMA nanogels as vehicles for delivery of photodynamic therapy agents. Nanoscale research letters, 2013. 8: p. 1-8. 29. Inoue, T., G. Chen, K. Nakamae, and A.S. Hoffman, Temperature sensitivity of a hydrogel network containing different LCST oligomers grafted to the hydrogel backbone. Polymer Gels and Networks, 1998. 5(6): p. 561-575. 30. Feil, H., Y.H. Bae, J. Feijen, and S.W. Kim, Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules, 1993. 26(10): p. 2496-2500. 31. Ye, Y., J. Huang, and X. Wang, Fabrication of a self-cleaning surface via the thermosensitive copolymer brush of P (NIPAAm-PEGMA). ACS Applied Materials & Interfaces, 2015. 7(40): p. 22128-22136. 32. Tian, P., Q. Wu, and K. Lian, Preparation of temperature‐and pH‐sensitive, stimuli‐responsive poly (N‐isopropylacrylamide‐co‐methacrylic acid) nanoparticles. Journal of applied polymer science, 2008. 108(4): p. 2226-2232. 33. Vancoillie, G., D. Frank, and R. Hoogenboom, Thermoresponsive poly (oligo ethylene glycol acrylates). Progress in Polymer Science, 2014. 39(6): p. 1074-1095. 34. Dong, J., Y. Wang, J. Zhang, X. Zhan, S. Zhu, H. Yang, and G. Wang, Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter, 2013. 9(2): p. 370-373. 35. Dalmont, H., O. Pinprayoon, and B.R. Saunders, Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium. Langmuir, 2008. 24(6): p. 2834-2840. 36. Bazban-Shotorbani, S., M.M. Hasani-Sadrabadi, A. Karkhaneh, V. Serpooshan, K.I. Jacob, A. Moshaverinia, and M. Mahmoudi, Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. Journal of Controlled Release, 2017. 253: p. 46-63. 37. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 2001. 53(3): p. 321-339. 38. Kocak, G., C. Tuncer, and V. Bütün, pH-Responsive polymers. Polymer Chemistry, 2017. 8(1): p. 144-176. 39. Zhou, S. and B. Chu, Synthesis and volume phase transition of poly (methacrylic acid-co-N-isopropylacrylamide) microgel particles in water. The Journal of Physical Chemistry B, 1998. 102(8): p. 1364-1371. 40. Wang, W., G. Ren, Y. Yang, W. Cai, and T. Chen, Synthesis and properties study of the uniform nonspherical styrene/methacrylic acid copolymer latex particles. Langmuir, 2015. 31(1): p. 105-109. 41. Huh, K.M., H.C. Kang, Y.J. Lee, and Y.H. Bae, pH-sensitive polymers for drug delivery. Macromolecular research, 2012. 20: p. 224-233. 42. Li, Y., A.S. Fabiano-Tixier, M.A. Vian, and F. Chemat, Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trends in Analytical Chemistry, 2013. 47: p. 1-11. 43. Tucker, J.L., Green chemistry, a pharmaceutical perspective. Organic process research & development, 2006. 10(2): p. 315-319. 44. 罗羽裳, 周继承, 游志敏, 徐文涛, and 高令飞, 微波作用于化学反应的研究进展. Hans Journal of Chemical Engineering and Technology, 2014. 4: p. 45. 45. Han, X., K. Shao, and W. Hu, Organic Drug Synthesis Assisted with Microwave Irradiation. Journal of Microwave Chemistry 微波化学, 2017. 1(1): p. 15-21. 46. Hu, W. and J. Wang, Combinatorial Catalysis with Physical, Chemical, and Biological Methodologies. Journal National Sciences Foundation of China, 2001. 3(9): p. 44. 47. Luo, Y., J. Zhou, Z. You, W. Xu, and L. Gao, Advances in microwave on chemical reactions. Hans J. Chem. Eng. Technol, 2014. 4: p. 45-62. 48. Polshettiwar, V. and R.S. Varma, Aqueous microwave assisted chemistry. 2010: Royal Society of Chemistry. 49. Tierney, J. and P. Lidström, Microwave assisted organic synthesis. 2009: John Wiley & Sons. 50. Leadbeater, N.E., Microwave heating as a tool for sustainable chemistry. 2010: CRC press. 51. Kumar, A., Y. Kuang, Z. Liang, and X. Sun, Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Materials Today Nano, 2020. 11: p. 100076. 52. Ghorani, B. and N. Tucker, Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food hydrocolloids, 2015. 51: p. 227-240. 53. Bhardwaj, N. and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology advances, 2010. 28(3): p. 325-347. 54. Liang, D., B.S. Hsiao, and B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced drug delivery reviews, 2007. 59(14): p. 1392-1412. 55. Demir, M.M., I. Yilgor, E. Yilgor, and B. Erman, Electrospinning of polyurethane fibers. Polymer, 2002. 43(11): p. 3303-3309. 56. Shin, Y., M. Hohman, M. Brenner, and G. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer, 2001. 42(25): p. 09955-09967. 57. Theron, S., E. Zussman, and A. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 2004. 45(6): p. 2017-2030. 58. Fridrikh, S.V., J.H. Yu, M.P. Brenner, and G.C. Rutledge, Controlling the fiber diameter during electrospinning. Physical review letters, 2003. 90(14): p. 144502. 59. Rutledge, G.C. and S.V. Fridrikh, Formation of fibers by electrospinning. Advanced drug delivery reviews, 2007. 59(14): p. 1384-1391. 60. Chen, J.-P., G.-Y. Chang, and J.-K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and surfaces a: physicochemical and engineering aspects, 2008. 313: p. 183-188. 61. Min, B.-M., G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, and W.H. Park, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004. 25(7-8): p. 1289-1297. 62. Adamu, B.F., J. Gao, A.K. Jhatial, and D.M. Kumelachew, A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Materials & Design, 2021. 209: p. 109942. 63. Khanam, N., C. Mikoryak, R.K. Draper, and K.J. Balkus Jr, Electrospun linear polyethyleneimine scaffolds for cell growth. Acta biomaterialia, 2007. 3(6): p. 1050-1059. 64. Agarwal, S., J.H. Wendorff, and A. Greiner, Use of electrospinning technique for biomedical applications. Polymer, 2008. 49(26): p. 5603-5621. 65. Kaur, G., G. Narayanan, D. Garg, A. Sachdev, and I. Matai, Biomaterials-based regenerative strategies for skin tissue wound healing. ACS Applied Bio Materials, 2022. 5(5): p. 2069-2106. 66. Jones, V., J.E. Grey, and K.G. Harding, Wound dressings. Bmj, 2006. 332(7544): p. 777-780. 67. Dong, R. and B. Guo, Smart wound dressings for wound healing. Nano Today, 2021. 41: p. 101290. 68. 何玲, 于波, 王慧丽, 李青, and 吕品, 甲壳素/壳聚糖生物抗菌敷料在皮肤组织工程中的应用. 中国组织工程研究, 2010. 14(38): p. 7149. 69. Hanna, J.R. and J.A. Giacopelli, A review of wound healing and wound dressing products. The Journal of foot and ankle surgery, 1997. 36(1): p. 2-14. 70. Nourian Dehkordi, A., F. Mirahmadi Babaheydari, M. Chehelgerdi, and S. Raeisi Dehkordi, Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem cell research & therapy, 2019. 10: p. 1-20. 71. Shi, C., C. Wang, H. Liu, Q. Li, R. Li, Y. Zhang, Y. Liu, Y. Shao, and J. Wang, Selection of appropriate wound dressing for various wounds. Frontiers in bioengineering and biotechnology, 2020. 8: p. 182. 72. Schreml, S., R.M. Szeimies, S. Karrer, J. Heinlin, M. Landthaler, and P. Babilas, The impact of the pH value on skin integrity and cutaneous wound healing. Journal of the European Academy of Dermatology and Venereology, 2010. 24(4): p. 373-378. 73. Liang, Y., J. He, and B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS nano, 2021. 15(8): p. 12687-12722. 74. Schneider, L.A., A. Korber, S. Grabbe, and J. Dissemond, Influence of pH on wound-healing: a new perspective for wound-therapy? Archives of dermatological research, 2007. 298(9): p. 413-420. 75. Percival, S.L., S. McCarty, J.A. Hunt, and E.J. Woods, The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound repair and regeneration, 2014. 22(2): p. 174-186. 76. Rezvani Ghomi, E., S. Khalili, S. Nouri Khorasani, R. Esmaeely Neisiany, and S. Ramakrishna, Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 2019. 136(27): p. 47738. 77. Ovington, L.G., Advances in wound dressings. Clinics in dermatology, 2007. 25(1): p. 33-38. 78. Cao, Y., X. Zhang, T. Xu, X. Zhang, L. Wang, Y. Wei, Z. Liang, H. Liu, L. Zhao, and D. Huang, Mechanoactive wound dressing using poly (N-isopropyl acrylamide) based hydrogels. European Polymer Journal, 2023: p. 112645. 79. 林昱伸, 製備光可調控溫度敏感型複合載體以作為藥物控制釋放系統. 2012. 80. Constantin, M., S. Bucatariu, V. Harabagiu, I. Popescu, P. Ascenzi, and G. Fundueanu, Poly (N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. European Journal of Pharmaceutical Sciences, 2014. 62: p. 86-95. 81. Ho, B.C., Y.D. Lee, and W.K. Chin, Thermal degradation of polymethacrylic acid. Journal of Polymer Science Part A: Polymer Chemistry, 1992. 30(11): p. 2389-2397. 82. Shen, Y., A. Farajtabar, J. Xu, J. Wang, Y. Xia, H. Zhao, and R. Xu, Thermodynamic solubility modeling, solvent effect and preferential solvation of curcumin in aqueous co-solvent mixtures of ethanol, n-propanol, isopropanol and propylene glycol. The Journal of Chemical Thermodynamics, 2019. 131: p. 410-419. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信