系統識別號 | U0002-1508202407191400 |
---|---|
DOI | 10.6846/tku202400670 |
論文名稱(中文) | 擴增實境融入科普課程對學習成效、科學學習態度與科技接受度的影響 |
論文名稱(英文) | The effect of Augmented Reality on college students' achievements, attitudes and technology acceptance towards science education |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 教育科技學系碩士班 |
系所名稱(英文) | Department of Educational Technology |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 陳吟暄 |
研究生(英文) | Yin-Hsuan Chen |
學號 | 612730043 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-06-20 |
論文頁數 | 126頁 |
口試委員 |
指導教授
-
賴婷鈴(tlai@gms.tku.edu.tw)
共同指導教授 - 張月霞(yuehhsiac@gms.tku.edu.tw) 口試委員 - 林秀玉(au4329@mail.au.edu.tw) |
關鍵字(中) |
擴增實境 科普教育 科學學習態度 科技接受度 |
關鍵字(英) |
Augmented Reality Popular Science Scientific Learning Approach Technology Acceptance Model |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
近年來科學的進步縮短了想像與的真實世界的距離,運用科技輔助能讓無法觸碰或觀察到的事物具象化,透過虛擬實境或擴增實境等教材設計,讓我們能超越時空、地點與三維空間的限制。在化學領域中,原子結構與分子模型是所有化學學習的基礎,屬於抽象概念,往往會造成學習上的困難。因此本研究合作對象淡江大學科學教育中心化學遊樂趣以此為基礎,設計開發了一款擴增實境教材【如果我轉生成血紅素】,希望能讓學生藉由觀察與操作分子模型,了解一氧化碳與氧氣在血液中進行氣體競爭的過程。本次研究以此擴增實境教材為基礎進行課程設計,期望發展出可彈性運用之化學科普教案進行實施。但因為授課時間、對象人數及課程難易度的取捨,將對象定為選修化學通識之大學生,並使用無母數進行後續的統計分析。 本研究結果如下: (1)擴增實境應用化學通識課程之學習成效:在融入擴增實境教材【如果我轉生成血紅素】的化學通識課程中,雖然學生的學習成效有些微提升,但並未達到顯著差異。這可能與課程設計、學習單引導、以及教材內容等多方面因素有關。部分學生反映在操作擴增實境教材時,由於需要整合2D與3D內容,過程中感到困惑和阻礙,這可能影響了他們的學習成效。 (2)科學學習態度、科技接受度與擴增實境教材應用態度:學生在科學學習態度、科技接受度以及擴增實境教材應用態度方面均有顯著的提升。尤其在學生對於科技接受度的認知上,擴增實境教材的操作被視為相對容易,且能有效提升學習效率。不過,對於擴增實境教材應用態度中的「課程感受」構面,顯示出較少顯著差異,原因可能是課程設計連貫性與整體課程的複雜度。 (3)課程發展與實施歷程:在課程實施過程中,難以確認擴增實境教材如何融入於課程中,同時需平衡教材的開放性與學生自主學習的需求。生活化模擬或與連結,較容易引起學生學習興趣。 |
英文摘要 |
Recent advances in virtual and augmented reality have enhanced educational methods by bridging imagination and reality. In chemistry, where atomic structures and molecular modeling are abstract, these technologies offer valuable benefits. This study employed the augmented reality (AR) teaching material “Reincarnated to the Hemoglobin ” developed by Tamkang University Center for Science Education, to help students interact with molecular models and visualize the competition between carbon monoxide and oxygen in the bloodstream. The aim was to improve comprehension of complex chemical processes. Targeting college students in General Chemistry, the AR tool was integrated into a flexible lesson plan. A statistical analysis, based on a null hypothesis, was performed to evaluate the effectiveness of this AR-based teaching approach on learning outcomes. The results of this study are as follows: (1) Learning Effectiveness: The incorporation of the augmented reality (AR) teaching material “If I Convert to Hemoglobin” into the Chemistry Liberal Studies Curriculum showed a slight improvement in learning effectiveness; however, no significant difference was observed overall. Challenges such as integrating 2D and 3D content may have contributed to student confusion and hindered their learning outcomes. (2) Attitudes towards Science Learning and Technology: Students' attitudes towards science learning, technology acceptance, and the use of AR materials improved significantly. They found the AR materials relatively easy to use and effective in enhancing learning efficiency. However, there were fewer significant improvements in the “course experience” due to issues with course coherence and curriculum complexity. (3) Curriculum Development and Implementation: Integrating AR materials into the curriculum proved challenging, particularly in balancing material openness with students' independent learning. Effective simulations and real-life scenario links are likely to increase student engagement and interest in learning. |
第三語言摘要 | |
論文目次 |
第一章 緒論 1 第一節 研究背景與研究動機 2 第二節 研究目的與待答問題 5 第三節 名詞定義與解釋 6 第四節 研究限制 9 第二章 文獻探討 10 第一節 教育與擴增實境 10 第二節 科普教育與化學通識 17 第三節 科學學習態度 25 第三章 研究設計與實施 33 第一節 研究方法與研究架構 33 第二節 研究場域與對象 35 第三節 研究流程 37 第四節 研究工具 40 第五節 教材介紹與課程設計 43 第六節 資料處理與分析方法 56 第四章 研究結果與討論 62 第一節 學習成效分析 62 第二節 科學學習態度與科技接受度問卷分析 79 第三節 擴增實境教材融入化學通識課程之感受回饋 88 第五章 結論與建議 93 第一節 結論 93 第二節 建議 100 參考文獻 102 附錄 113 附錄一 【如果我轉生成血紅素】前、後知識測驗題目 113 附錄二 【如果我轉生成血紅素】前、後態度問卷題目 117 附錄三 如果我轉生成血紅素學習單 121 圖次 圖2-1-1 現實—虛擬光譜 10 圖2-2-1 化學中的三種概念 21 圖2-3-1 科學態度關係圖 27 圖3-1-1 研究架構圖 35 圖3-3-1 研究流程圖 39 表次 表2-1-1 標記類型示意圖 13 表2-3-1 「科學態度」與「對科學的態度」關係表 26 表2-3-2 科學學習態度國內外相關研究 30 表3-2-1 個案研究對象之資料 36 表3-5-1 擴增實境教材畫面簡述 44 表3-6-1 「科學學習態度問卷」構面與題目舉例 57 表3-6-2 「擴增實境教材應用量表」構面與題目範例 58 表3-6-3 「科技接受度量表」構面與題目範例 59 表3-6-4 質性研究-學習單資料編碼 60 表3-6-5 質性研究-訪談資料編碼 60 表4-1-1 高低先備知識男女比 63 表4-1-2 課前、課後知識測驗平均數、標準差摘要表 64 表4-1-3 知識前後測驗無母數WILCOXON分析 65 表4-1-4 高、低先備知識者前後測敘述統計 66 表4-1-5 高先備知識者知識前後測驗無母數WILCOXON分析 67 表4-1-6 低先備知識者知識前後測驗無母數WILCOXON分析 67 表4-1-7 學習單平均數、標準差摘要表 68 表4-1-8 學習單分析之個案基本資料 69 表4-1-9 擴增實境觀察表格之撰寫評分標準 71 表4-1-10 學習單第一部分題目 73 表4-1-11 學習單第一部分題目分析 73 表4-1-12 學習單第二部分題目 74 表4-1-13 學習單第二部分題目學生回應統整 75 表4-1-14 學習單課後統整題目 76 表4-1-15 學習單課後統整學生回應統整 77 表4-2-1 課前、課後問卷之平均數、標準差摘要表 79 表4-2-2 科學學習態度 前後測無母數分析摘要表 81 表4-2-3 科技接受度 前後測無母數分析摘要表 82 表4-2-4 擴增實境教材應用態度 前後測無母數分析摘要表 83 表4-2-5 高先備知識者前後態度問卷無母數分析 85 表4-2-6 低先備知識者前後態度問卷無母數分析 86 表4-3-1 訪談者資料表 88 |
參考文獻 |
中文文獻 余民寧, 翁雅芸, & 張靜軒 (2018). 數理科學的學習動機有性別差異嗎? 一個來自後設分析的證據. Contemporary Educational Research Quarterly, 23(1). 吳坤璋、黃台珠、吳裕益 (2006). 以結構方程模式檢驗影響國小學生對科學的態度之理論模式。科學教育學刊, 1(2),83-106。 宋秀芬 (2008). 趣味科學活動對國中生科學態度與對科學的態度之研究(為出版之碩士論文)。國立台灣師範大學,台北市。 林樹聲、趙金祁(1999) 大學教育中通識化科學課程的必要及實踐進向. 通識教育季刊, 6(4), 1-18. https://doi.org/10.6745/JGE.199912_6(4).0001 李旺龍(2014) 科學家該怎麼投入科學傳播?。科學月刊,531:194-198。 https://smcase.ntu.edu.tw/SMCASE/?p=5676 李詩慧(2017) 科學教育在大學通識課程的實踐──以台大張文亮教授課程為例(未出版碩士論文)。國立臺灣師範大學碩士論文。取自 http://ndltd.ncl.edu.tw/handle/wdbhs2 徐永檀(2012) 補習班專家教師與生手教師學科教學知識(PCK)之比較-以國中化學反應單元為例(未出版之碩士論文)。臺北市立教育大學科學教育碩士論文。 https://hdl.handle.net/11296/5635kf 徐俊龍、吳盈妮(2017) 十二年國民基本教育課程綱要實施教材教學研發與課程轉化之研究(NAER-106-11-A-1-01-01-1-03)。國家教育研究院課程及教學研究中心。https://rh.naer.edu.tw/handle/c6593 許德發 (2000). 專科學生對科學的態度、生物學科自我效能與其營養健康信念表徵、學業成就之關係研究(為出版之碩士論文)。國立台灣師範大學,台北市。 張訓譯(2018) 翻轉教學之偏鄉問題再思考。臺灣教育評論月刊,7(8),82- 103 87。https://www-airitilibrarycom. ezproxy.lib.tku.edu.tw/Article/Detail?DocID=P20130114001-201808- 201808230011-201808230011-82-87 張春興. (2007). 教育心理學: 三化取向的理論與實踐 (重修二版). 臺北市: 東華 書局。 陳英正、陳英豪(2017) 以科技接受模式探討國小資源班教師實施資訊科技融 入教學之意願。人文社會科學研究,11(2),17-37。 https://doi.org/10.6618/HSSRP.2017.11(2)2 陳信劼(2001) 中學生對化學反應特性的自發性類比研究(未出版之碩士論 文)。國立彰化師範大學科學教育碩士論文。 https://hdl.handle.net/11296/nd4jpp 陳雅君、洪瑞兒、佘曉清、林煥祥(2016) 臺灣學生科學素養與科學教學者研 究成果表現之發展趨勢探討。科學教育學刊,24(4),333-354。 https://doi.org/10.6173/CJSE.2016.2404.01 陳裕政 (2012). 國小六年級學生學習動機、科學態度與科學探究能力之相關研 究。國立屏東教育大學數理教育碩士論文,屏東縣。取自 https://hdl.handle.net/11296/kp43ub 王琬菁(2002) 「原子價」概念融入科學課文對學生學習化學式與其相關概念 (未出版之碩士論文)。國立臺灣師範大學科學教育碩士論文。 https://hdl.handle.net/11296/f97j98 黃季雍(2014) 科普、科傳與科學傳播的人才培育。科學月刊,531:204- 210。 https://smcase.ntu.edu.tw/SMCASE/?p=5676 浦青青、郭乃綺(2023) 中學生參與博物館雙語學習活動之態度-以「氣候變 遷」雙語活動為例。科技博物,27(1),35-66。 https://www.airitilibrary.com/Article/Detail?DocID=16841220-N202304120009- 00003 104 翁穎哲、譚克平(2008) 設計研究法簡介及其在教育研究的應用範例。科學教育月刊,(307),15-30。 https://doi.org/10.6216/SEM.200804_(307).0003 教育部(2018) 十二年國民基本教育課程綱要:國民中小學暨普通型高級中等學校:自然科學領域。取自https://www.edu.tw/ 教育部 (2023) 十數位時代媒體素養教育白皮書。取自https://www.edu.tw/ 謝秉桓、林啟華、曾茂仁、鐘建坪、邱美虹(2014) 九年級個案學生粒子概念之探討--以擴散作用為例。科學教育月刊,(367),2-23。 https://doi.org/10.6216/SEM.201404_(367).0001 鄭湧涇、楊坤原(1998) 國中學生對生物學的態度。師大學報:科學教育類, 43(2),37-54。 https://doi.org/10.6300/JNTNU.1998.43(2).03 鈕文英(2023) 質性研究方法與論文寫作(四版)。雙葉書廊。 盧鈺 (2021). 國民中學STEM課程融入自然科學領域教學之研究—以光議題為例。台北市立大學應用物理計畫學系應用科學碩士班碩士論文,台北市。取自 https://hdl.handle.net/11296/j2p479 外文文獻 Ahtee, M., & Varjola, I.(1998). Students’ understanding of chemical reaction. International Journal of Science Education, 20(3), 305-316. Akram, H., Abdelrady, A. H., Al-Adwan, A. S., & Ramzan, M. (2022). Teachers’ perceptions of technology integration in teaching-learning practices: A systematic review. Frontiers in psychology, 13, 920317. Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research?. Educational researcher, 41(1), 16-25. https://doi.org/10.3102/0013189X11428813 Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142, 103647. Azuma, R. T. (1997). A survey of augmented reality. Presence: teleoperators & virtual environments, 6(4), 355-385. https ://doi.org/10.1162/pres.1997.6.4.355 Baabdullah, A. M., Alsulaimani, A. A., Allamnakhrah, A., Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2022). Usage of augmented reality (AR) and development of e-learning outcomes: An empirical evaluation of students’e-learning experience. Computers & Education, 177, 104383. https://doi.org/10.1016/j.compedu.2021.104383 Bano, M., Zowghi, D., Kearney, M., Schuck, S., & Aubusson, P. (2018). Mobile learning for science and mathematics school education: A systematic review of empirical evidence. Computers & Education, 121, 30-58. https://doi.org/10.1016/j.compedu.2018.02.006 Barrett, T. J., Stull, A. T., Hsu, T. M., & Hegarty, M. (2015). Constrained 106 interactivity for relating multiple representations in science: When virtual is better than real. Computers & Education, 81, 69-81. Bernauer, J. A., Fuller, R. G., & Cassels, A. M. (2024). Transforming courses across teaching modalities in higher education. Current Issues in Education, Arizona State University, 25(1). Robert Morris University. Bereiter, C. (1990). Aspects of an educational learning theory. Review of educational research, 60(4), 603-624. https://doi.org/10.3102/00346543060004603 Berney, S., & Bétrancourt, M. (2016). Does animation enhance learning? A meta-analysis. Computers & Education, 101, 150-167. https://doi.org/10.1016/j.compedu.2016.06.005 Biggs, J. (1993). What do inventories of students' learning processes really measure? A theoretical review and clarification. British journal of educational psychology, 63(1), 3-19. https://doi.org/10.1111/j.2044-8279.1993.tb01038.x Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The journal of the learning sciences, 2(2), 141-178. https://doi.org/10.1207/s15327809jls0202_2 Buchner, J., & Kerres, M.(2023). Media comparison studies dominate comparative research on augmented reality in education. Computers & Education, 195, 104711. https://doi.org/10.1016/j.compedu.2022.104711 Burns, T. W., O'Connor, D. J., & Stocklmayer, S. M. (2003). Science Communication:A Contemporary Definition. Public Understanding of Science, 12(2), 183-202. https://doi.org/10.1177/09636625030122004 Cakir, M. (2008). Constructivist approaches to learning in science and their implications for science pedagogy: A literature review. International journal of environmental and science education, 3(4), 193-206. https://eric.ed.gov/?id=EJ894860 107 Carroll, A., Baglioni, A. J., Houghton, S., & Bramston, P. (1999). At‐risk and not at‐risk primary school children: An examination of goal orientations and social reputations. British Journal of Educational Psychology, 69(3), 377-392. Chang, H. Y., Binali, T., Liang, J. C., Chiou, G. L., Cheng, K. H., Lee, S. W. Y., & Tsai, C. C. (2022). Ten years of augmented reality in education: A meta-analysis of (quasi-) experimental studies to investigate the impact. Computers & Education, 191, 104641. Chang, S. C., & Hwang, G. J. (2018). Impacts of an augmented reality-based flipped learning guiding approach on students’ scientific project performance and perceptions. Computers & Education, 125, 226-239. Chazan, B. (2022). Principles and pedagogies in Jewish education (p. 97). Springer Nature. Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of science education and technology, 22, 449-462. Cho, S. K., & Kim, O. T. (2012). From science popularization to public engagement: The history of science communication in Korea. Science Communication in the World: Practices, Theories and Trends, 181-191. Collins, A.M., Joseph, D., & Bielaczyc, K. (2004). Design Research: Theoretical and Methodological Issues. Journal of the Learning Sciences, 13, 15 - 42. https://api.semanticscholar.org/CorpusID:7154229 Conley, Q., Atkinson, R. K., Nguyen, F., & Nelson, B. C. (2020). MantarayAR: Leveraging augmented reality to teach probability and sampling. Computers & Education, 153, 103895. Creswell, J. W., & Garrett, A. L. (2008). The “movement” of mixed methods 108 research and the role of educators. South African journal of education, 28(3), 321-333. https://doi.org/10.15700/saje.v28n3a176 Danaei, D., Jamali, H. R., Mansourian, Y., & Rastegarpour, H. (2020). Comparing reading comprehension between children reading augmented reality and print storybooks. Computers & Education, 153, 103900. Diacopoulos, M. M., & Crompton, H. (2020). A systematic review of mobile learning in social studies. Computers & Education, 154, 103911. Driver, R., & Oldham, V. (1986). A Constructivist Approach to Curriculum Development in Science, Studies in Science Education, 13:1, 105-122. https://doi.org/10.1080/03057268608559933 Edelson, D. C. (2002). Design research: What we learn when we engage in design. The Journal of the Learning sciences, 11(1), 105-121. https://doi.org/10.1207/S15327809JLS1101_4 Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635. Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80 (5), 509-34. https://doi.org/10.1002/(SICI)1098-237X(199609) 80:5<509::AID-SCE2>3.0.CO;2-F Hesse III, J. J., & Anderson, C. W. (1992). Students' conceptions of chemical change. Journal of Research in science teaching, 29(3), 277-299. https://doi.org/10.1002/tea.3660290307 Hsu, T. C. (2017). Learning English with augmented reality: Do learning styles matter ?. Computers & Education, 106, 137-149. https://doi.org/10.1016/j.compedu.2016.12.007 109 Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123. Ibáñez, M. B., Portillo, A. U., Cabada, R. Z., & Barrón, M. L. (2020). Impact of augmented reality technology on academic achievement and motivation of students from public and private Mexican schools. A case study in a middle-school geometry course. Computers & Education, 145, 103734. https://doi.org/10.1016/j.compedu.2019.103734 Indicators, O. E. C. D. (2012). Education at a Glance 2016. Editions OECD, 90. Khan, T., Johnston, K., & Ophoff, J. (2019). The impact of an augmented reality application on learning motivation of students. Advances in human-computer interaction, 2019. https://doi.org/10.1155/2019/7208494 Küçük, S., Yilmaz, R., Baydas, Ö., & Göktas, Y. (2014). Augmented reality applications attitude scale in secondary schools: Validity and reliability study. Egitim ve Bilim, 39(176). Lamb, R., Antonenko, P., Etopio, E., & Seccia, A. (2018). Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy. Computers & Education, 124, 14-26. Lee, M. H., Johanson, R. E., & Tsai, C. C. (2008). Exploring Taiwanese high school students' conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191-220. Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & management, 40(3), 191-204. Liang, J. C., Chou, C. C. & Chiu, M. H. (2011). Student test performances on behavior of gas particles and mismatch of teacher predictions. Chemistry Education Research and Practice, 12, 238-250. 110 https://doi.org/10.1039/C1RP90029C Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329. Oladejo, A. I., Ademola, I. A., Ayanwale, M. A., & Tobih, D. (2023). Concept Difficulty in Secondary School Chemistry--An Intra-Play of Gender, School Location and School Type. Journal of Technology and Science Education, 13(1), 255-275. Özmen, H. (2008). The influence of computer-assisted instruction on students’ conceptual understanding of chemical bonding and attitude toward chemistry: A case for Turkey. Computers & Education, 51(1), 423-438. Patrick, P. G. (Ed.). (2023). How People Learn in Informal Science Environments. Springer Nature. Patrick, P. G., & Weinstein, J. (2023). General Systems Theory and Boundary Crossing: Exploring the Relationship Between Zoo Educators and Elementary Educators. In How People Learn in Informal Science Environments (pp. 335-356). Cham: Springer International Publishing. Pence, H. E. (2010). Smartphones, smart objects, and augmented reality. The Reference Librarian, 52(1-2), 136-145. Rau, P. L. P., Zheng, J., Guo, Z., & Li, J. (2018). Speed reading on virtual reality and augmented reality. Computers & Education, 125, 240-245. Rogers, A. (2019). Second-generation non-formal education and the sustainable development goals: Operationalising the SDGs through community learning centres. International Journal of Lifelong Education, 38(5), 515-526. https://doi.org/10.1080/02601370.2019.1636893 Schunk, D. H. (2012). Learning theories an educational perspective. Pearson Education, Inc. 111 Sirakaya, M., & Alsancak Sirakaya, D. (2018). Trends in educational augmented reality studies: a systematic review. Malaysian Online Journal of Educational Technology, 6(2), 60-74. 10.17220/mojet.2018.02.005 Soltani, P., & Morice, A. H. (2020). Augmented reality tools for sports education and training. Computers & Education, 155, 103923. Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. Teddlie, C., & Tashakkori, A. (2011). Mixed methods research. The Sage handbook of qualitative research, 4, 285-300. Teo, T., Khazaie, S., & Derakhshan, A. (2022). Exploring teacher immediacy-(non) dependency in the tutored augmented reality game-assisted flipped classrooms of English for medical purposes comprehension among the Asian students. Computers & Education, 179, 104406. Tinoca, L., Piedade, J., Santos, S., Pedro, A., & Gomes, S. (2022). Design-based research in the educational field: a systematic literature review. Education Sciences, 12(6), 410. https://doi.org/10.3390/educsci12060410 Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International journal of virtual reality, 9(2), 1-20. Yang, F. C. O., Lai, H. M., & Wang, Y. W. (2023). Effect of augmented reality-based virtual educational robotics on programming students’ enjoyment of learning, computational thinking skills, and academic achievement. Computers & Education, 195, 104721. Yip, J., Wong, S. H., Yick, K. L., Chan, K., & Wong, K. H. (2019). Improving quality of teaching and learning in classes by using augmented reality 112 video. Computers & Education, 128, 88-101. Zhan, T., Yin, K., Xiong, J., He, Z., & Wu, S. T. (2020). Augmented reality and virtual reality displays: perspectives and challenges. Iscience, 23(8). 10.1016/j.isci.2020.101397 |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信