系統識別號 | U0002-1507202415535300 |
---|---|
DOI | 10.6846/tku202400515 |
論文名稱(中文) | 無人機協作無線供電通訊網路下無線裝置合作傳輸之最小化能源消耗研究 |
論文名稱(英文) | Energy Consumption Minimization with Cooperative Transmission for UAV-enabled Wireless Powered Communication Networks |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 黃瀚逸 |
研究生(英文) | HAN-I HUANG |
學號 | 612410026 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-06-13 |
論文頁數 | 58頁 |
口試委員 |
指導教授
-
石貴平(kpshih@gms.tku.edu.tw)
口試委員 - 王三元(sywang@isu.edu.tw) 口試委員 - 陳彥達(ydchen@gms.tku.edu.tw) |
關鍵字(中) |
無線供電通訊網路 無人機 節點合作傳輸 時間分配 |
關鍵字(英) |
Wireless Powered Communication Network (WPCN) Unmanned Aerial Vehicle (UAV) Cooperative Transmission Time Allocation |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文旨在解決無人機協作無線供電通訊網路中,最小化能源消耗的問題。針對無線供電通訊網路中使用混合存取點(Hybrid Access Point, HAP)所產生的雙重近遠問題(Doubly Near-Far problem),我們提出了一種創新的解決方案,結合無人機和節點合作傳輸技術,使用無人機代替HAP,並將無線節點分群,由無人機逐群進行服務。無人機在每個群上方懸停,為節點進行充電及接收回傳的資料。為減輕遠距離節點的負擔,我們採用節點合作傳輸方案,讓距離無人機較近的節點協助較遠節點代傳部分資料,減少雙重近遠問題帶來的能量消耗。本論文提出的最小化飛行路徑演算法(Flight Path Minimization Algorithm, FPMA)根據分群結果,優化無人機的懸停點位置及飛行路徑,同時考量懸停點的位置與訪問順序。再使用順序最小二乘規劃(Sequential Least-Squares Quadratic Pro-gramming, SLSQP)求解最小化懸停時間,進一步降低無人機的總電量消耗。模擬結果顯示,我們的方法在節點合作傳輸及路徑優化方面能有效減少能源消耗,具有顯著的性能提升。 |
英文摘要 |
This paper aims to address the issue of minimizing energy consumption in collaborative wireless power communication networks involving drones. To tackle the doubly near-far problem in wireless power communication networks using Hybrid Access Points (HAPs), we propose an innovative solution that combines drone and node cooperative transmission technology. In our approach, UAV replace HAPs, and wireless sensor nodes are grouped, with UAV serving each group sequentially. The drone hovers above each group, providing charging and receiving the transmitted data from the nodes. To alleviate the burden on distant nodes, we adopt a node cooperative transmission scheme, where nodes closer to the drone assist distant nodes by relaying part of their data, thus reducing the energy consumption caused by the doubly near-far problem. Our proposed Flight Path Minimization Algorithm (FPMA) optimizes the drone's hovering points and flight path based on the grouping results, considering the position and sequence of the hovering points. We then use Sequential Least-Squares Quadratic Programming (SLSQP) to minimize the hovering time, further reducing the total energy consumption of the drone. Simulation results show that our method effectively reduces energy consumption through node cooperative transmission and path optimization, demonstrating significant performance improvements. |
第三語言摘要 | |
論文目次 |
目錄 第1章 介紹 1 第2章 預備知識 9 2.1 網路模型 9 2.2 時間分配 11 2.3 System Overview 12 第3章 Radius-Constrained K-means 14 第4章 Flight Path Minimization Algorithm 17 4.1 Initialize Hover Point 20 4.2 Initialize Flight Path 22 4.3 FPMA Iteration 25 4.4 Reduce Flight Curvature 27 4.5 Merge Hover Points 28 第5章 Relay Selection Algorithm 31 第6章 HECm 33 6.1 問題表述 33 6.2 SLSQP Algorithm for HECm 40 第7章 績效評估 45 7.1 有無節點合作傳輸的比較 47 7.2 耗電量比較 48 7.3 FPMA不同場景大小比較圖 52 第8章 結論 Conclusion 55 參考文獻 56 圖目錄 圖一、無線感測網路 (Wireless Sensor Networks , WSNs) 1 圖二、HTT(Harvest Then Transmit)協議 2 圖三、WPCN第一種架構 3 圖四、WPCN第二種架構 4 圖五、節點合作傳輸 6 圖六、飛行場景圖 10 圖七、時間排程 11 圖八、論文簡易架構圖 13 圖九、UAV傳輸範圍示意圖 14 圖十、懸停點範圍限制 16 圖十一、飛行功率模型變化圖 18 圖十二、飛行500公尺推進耗能變化圖 18 圖十三、初始懸停點 20 圖十四、Initialize Hover Point示意圖一 21 圖十五、Initialize Hover Point示意圖二 22 圖十六、Initialize Flight Path示意圖一 23 圖十七、Initialize Flight Path示意圖二 24 圖十八、FPMA Iteration示意圖 26 圖十九、Reduce Flight Curvature示意圖 28 圖二十、Merge Hover Points示意圖 29 圖二十一、Flight Path Minimization Algorithm 架構圖 30 圖二十二、FPMA三視圖 30 圖二十三、relay選擇場景 32 圖二十四、HECm架構圖 33 圖二十五、論文架構圖 45 圖二十六、有無節點合作傳輸差異圖 47 圖二十七、UAV整體耗電量比較圖 49 圖二十八、飛行耗電量比較圖 50 圖二十九、懸停耗電量比較圖 51 圖三十、WET階段耗電量比較圖 52 圖三十一、不同場景大小耗電量比較圖 53 圖三十二、不同場景大小懸停耗電量比較圖 54 表目錄 表1、網路模擬參數表格 46 |
參考文獻 |
參考文獻 [1] A. Ali, Y. Ming, S. Chakraborty, and S. Iram, "A Comprehensive Survey on Real-Time Applications of WSN," Future Internet, vol. 9, no. 4, 2017, doi: 10.3390/fi9040077. [2] Y. Gu, H. Chen, Y. Li, and B. Vucetic, "An adaptive transmission protocol for wireless-powered cooperative communications," in 2015 IEEE International Conference on Communications (ICC), 8-12 June 2015 2015, pp. 4223-4228, doi: 10.1109/ICC.2015.7248986. [3] S. Scorcioni, L. Larcher, A. Bertacchini, L. Vincetti, and M. Maini, "An integrated RF energy harvester for UHF wireless powering applications," in 2013 IEEE Wireless Power Transfer (WPT), 15-16 May 2013 2013, pp. 92-95, doi: 10.1109/WPT.2013.6556890. [4] Z. Zhang, H. Pang, A. Georgiadis, and C. Cecati, "Wireless Power Transfer—An Overview," IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1044-1058, 2019, doi: 10.1109/TIE.2018.2835378. [5] C. K. Ho and R. Zhang, "Optimal energy allocation for wireless communications powered by energy harvesters," in 2010 IEEE International Symposium on Information Theory, 13-18 June 2010 2010, pp. 2368-2372, doi: 10.1109/ISIT.2010.5513719. [6] H. Ju and R. Zhang, "Throughput Maximization in Wireless Powered Communication Networks," IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 418-428, 2014, doi: 10.1109/TWC.2013.112513.130760. [7] P. Vamvakas, E. E. Tsiropoulou, M. Vomvas, and S. Papavassiliou, "Adaptive power management in wireless powered communication networks: a user- centric approach," in 2017 IEEE 38th Sarnoff Symposium, 18-20 Sept. 2017 2017, pp. 1-6, doi: 10.1109/SARNOF.2017.8080386. [8] N. Deepan and B. Rebekka, "Backscatter-assisted Wireless Powered Communication Networks with Multiple Antennas," in 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 4-6 Aug. 2020 2020, pp. 135-138, doi: 10.1109/WiSPNET48689.2020.9198357. [9] R. Wang, J. Chen, B. He, L. Lv, Y. Zhou, and L. Yang, "Energy Consumption Minimization for Wireless Powered NOMA-MEC with User Cooperation," in 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), 20-22 Oct. 2021 2021, pp. 1-5, doi: 10.1109/WCSP52459.2021.9613252. [10] D. Song, W. Shin, and J. Lee, "Sum-Rate Maximization Under QoS Constraints for WPCN with User Cooperation," in 2018 IEEE Globecom Workshops (GC Wkshps), 9-13 Dec. 2018 2018, pp. 1-7, doi: 10.1109/GLOCOMW.2018.8644129. [11] D. Song, W. Shin, J. Lee, and H. V. Poor, "Sum-Throughput Maximization With QoS Constraints for Cooperative WPCNs," IEEE Access, vol. 7, pp. 130622-130637, 2019, doi: 10.1109/ACCESS.2019.2936137. [12] H. Chen, L. Xiao, D. Yang, T. Zhang, and L. Cuthbert, "User Cooperation in Wireless Powered Communication Networks With a Pricing Mechanism," IEEE Access, vol. 5, pp. 16895-16903, 2017, doi: 10.1109/ACCESS.2017.2740403. [13] B. Lyu, D. T. Hoang, and Z. Yang, "User Cooperation in Wireless-Powered Backscatter Communication Networks," IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 632-635, 2019, doi: 10.1109/LWC.2018.2890642. [14] M. Yang, Y. Xu, C. Huang, D. Li, and Y. Peng, "Sum-Rate Maximization in RIS-Aided Wireless-Powered D2D Communication Networks," in 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 12-15 Sept. 2022 2022, pp. 307-312, doi: 10.1109/PIMRC54779.2022.9977525. [15] X. Shi, W. Xu, C. H. Lee, Z. Feng, and J. Lin, "Optimal Beamforming and Duration/Power Allocation for Cooperative PB-Enabled WPCN," in 2017 IEEE Wireless Communications and Networking Conference (WCNC), 19-22 March 2017 2017, pp. 1-6, doi: 10.1109/WCNC.2017.7925945. [16] Z. An, Y. Liu, G. Sun, H. Pan, and A. Wang, "UAV-enabled Wireless Powered Communication Networks: A Joint Scheduling and Trajectory Optimization Approach," presented at the 2022 IEEE Symposium on Computers and Communications (ISCC), 2022. [17] Q. Zhang, Z. Wang, P. Zhang, H. Zhang, X. Wan, and Z. Fan, "Sum energy maximization for UAV-enabled wireless power transfer networks with nonlinear energy harvesting model," in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 12-14 June 2020 2020, vol. 1, pp. 1417-1420, doi: 10.1109/ITNEC48623.2020.9085191. [18] H. Yan, Y. Chen, and S.-H. Yang, "Time Allocation and Optimization in UAV-Enabled Wireless Powered Communication Networks," IEEE Transactions on Green Communications and Networking, vol. 6, no. 2, pp. 951-964, 2022, doi: 10.1109/tgcn.2021.3117312. [19] Y. Zhang, D. Mishra, H. H. Gharakheili, and D. Wing Kwan Ng, "UAV Operation Time Minimization for Wireless-Powered Data Collection," presented at the ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024. [20] Z. Liu, W. Xu, L. Guo, Z. Zhang, and J. Lin, "Flying Path Optimization of UAV for Wireless Power Transfer Systems: A Spectral-Clustering-Enabled Approach," in 2019 IEEE 19th International Conference on Communication Technology (ICCT), 16-19 Oct. 2019 2019, pp. 1220-1225, doi: 10.1109/ICCT46805.2019.8947278. [21] Y. Zeng, J. Xu, and R. Zhang, "Rotary-Wing UAV Enabled Wireless Network: Trajectory Design and Resource Allocation," in 2018 IEEE Global Communications Conference (GLOBECOM), 9-13 Dec. 2018 2018, pp. 1-6, doi: 10.1109/GLOCOM.2018.8647595. [22] F. P. Fontan and P. M. Espineira, Modeling the Wireless Propagation Channel. Willey, 2008. [23] F. Yang, W. Xu, Z. Zhang, L. Guo, and J. Lin, "Energy Efficiency Maximization for Relay-Assisted WPCN: Joint Time Duration and Power Allocation," IEEE Access, vol. 6, pp. 78297-78307, 2018, doi: 10.1109/ACCESS.2018.2884953. [24] F. E. Curtis and M. L. Overton, "A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization," SIAM Journal on Optimization, vol. 22, no. 2, pp. 474-500, 2012, doi: 10.1137/090780201. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信