| 系統識別號 | U0002-1506202523361400 |
|---|---|
| DOI | 10.6846/tku202500243 |
| 論文名稱(中文) | 消費者對自助服務機台使用意圖之研究-以科技準備度為干擾變數 |
| 論文名稱(英文) | A Study on Consumers' Intention to Use Self-Service Machines - Technology Readiness as a Moderator |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 國際企業學系碩士班 |
| 系所名稱(英文) | Master's Program, Department Of International Business |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 鄭立昀 |
| 研究生(英文) | Li-Yun Cheng |
| 學號 | 612550185 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-06-02 |
| 論文頁數 | 112頁 |
| 口試委員 |
指導教授
-
張俊惠(075985@o365.tku.edu.tw)
共同指導教授 - 曾威智(wythee@gmail.com) 口試委員 - 黃志文 口試委員 - 魏上凌 |
| 關鍵字(中) |
確認 知覺易用性 知覺有用性 滿意 態度 使用意圖 科技準備度 |
| 關鍵字(英) |
Confirmation Perceived Ease of Use Perceived Useless Satisfaction Attitude Intention to Use Technology Readiness |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
隨著科技的快速發展,現代社會日益依賴科技來進行人際互動與商業行為,科技產品與服務已成為日常生活中不可或缺的一部分,不僅改變了人們的生活型態,同時也重新定義了企業與消費者之間的互動模式。
在這樣的背景下,全球各地的企業為了因應消費者日益多元化的需求,紛紛導入自助服務科技(Self-Service Technology, SST)與機台來提供服務,不僅能提升服務速度與企業競爭力,還有助於降低營運成本,提升企業整體效能。同時,透過更快速、便利且自主的操作體驗,亦能強化顧客的整體服務感受,有效提升顧客的滿意度與忠誠度。隨著人工智慧、物聯網與雲端運算技術的日趨成熟,自助服務的應用範圍更為廣泛。尤其在疫情之後,消費者對於「非接觸式互動」的偏好明顯提升,促使消費者對於自助服務科技的接受度與期待迅速增加,也推動企業加速其導入與優化,自助服務科技未來的發展潛力與應用價值備受關注,值得進一步深入探討其發展趨勢、消費者之使用意圖及其影響因素。
本研究針對台灣自助服務機台市場,探討消費者之確認、知覺易用性是否顯著影響消費者的使用意圖,又或是需透過知覺有用性、滿意及態度加以中介,間接影響使用意圖,並且同時探討台灣自助服務機台市場的消費者,是否會因其科技準備度不同而有所顯著的差異。
本研究以台灣曾使用過自助服務機台之消費者為研究對象,以 LISREL 統計軟體進行分析。實證結果如下:
一、在台灣自助服務機台市場中,確認、知覺易用性皆會顯著影響消費者對自助服務機台的使用意圖。
二、在台灣自助服務機台市場中,知覺易用、確認在影響消費者對自助服務機台使用意圖過
程中,知覺有用、滿意及態度確實扮演著重要的中介角色。
三、在台灣自助服務機台市場中,不同科技準備度的消費者,影響其個別使用自助服務機台
的關鍵影響因素有顯著的不同。
|
| 英文摘要 |
With the rapid advancement of technology, modern society increasingly relies on technology for interpersonal interactions and business activities. Technological products and services have become an integral part of daily life, transforming lifestyles and redefining the interaction between businesses and consumers.
To meet diverse consumer needs, businesses worldwide have adopted Self-Service Technologies (SSTs) and kiosks. These technologies enhance efficiency and competitiveness, reduce costs, and improve performance. The faster, more convenient, and autonomous experience strengthens satisfaction and loyalty.As AI, IoT, and cloud computing mature, SSTs have expanded across industries. In the post-pandemic era, rising preference for contactless interactions has boosted acceptance and expectations. This has driven businesses to accelerate adoption, underscoring SSTs' future value. Further exploration of trends, user intentions, and influencing factors is essential.
This study focuses on the self-service kiosks market in Taiwan, investigating whether confirmation and perceived ease of use significantly influence consumers’ intentions directly, or indirectly through perceived usefulness, satisfaction, and attitude as mediating variables. Additionally, it examines whether consumer responses differ significantly depending on their technology readiness.
The study targets consumers in Taiwan who have experience using self-service machine and utilizes the LISREL statistical software for analysis. The empirical findings are as follows:
1.Both confirmation and perceived ease of use significantly influence consumers' usage intentions.
2.Perceived usefulness, satisfaction, and attitude serve as important mediators in the relationships between confirmation, perceived ease of use, and usage intention.
3.Consumers with different technology readiness show significant differences in the key factors affecting their intention to use self-service kiosks.
|
| 第三語言摘要 | |
| 論文目次 |
目錄 目錄 i 表目錄 iii 圖目錄 v 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 5 第三節 研究目的 7 第四節 研究範圍及對象 8 第五節 研究流程 9 第二章 文獻回顧 10 第一節 自助服務科技(Self-Service Technologies ,SSTs) 10 第二節 科技持續理論(Technology Continuance Theory, TCT) 15 第三節 科技準備度(Technology Readiness Index) 20 第三章 研究方法 24 第一節 研究架構 24 第二節 研究假說 26 第三節 研究變數之操作性定義與衡量 31 第四節 問卷設計 38 第五節 資料分析方法 40 第四章 資料分析與結果 44 第一節 敘述性統計分析 44 第二節 結構方程式模型分析 54 第五章 研究結論與發現 86 第一節 研究結論 86 第二節 研究發現 88 第三節 研究限制與未來研究建議 92 參考文獻 93 附錄 研究問卷 104 表目錄 表1-1 常見的自助服務機台 1 表2-1 自助服務科技之定義及相關文獻彙整表 11 表2-2 自助服務科技之類型 13 表2-3 科技準備度之相關文獻彙整表 23 表3-1 本研究之研究假說統整表 30 表3-2 確認之操作性定義與衡量問項 31 表3-3 知覺易用性之操作性定義與衡量問項 32 表3-4 知覺有用性之操作性定義與衡量問項 33 表3-5 滿意之操作性定義與衡量問項 34 表3-6 態度之操作性定義與衡量問項 35 表3-7 使用意圖之操作性定義與衡量問項 36 表3-8 科技準備度之操作性定義與衡量問項 37 表3-9 研究問卷發放與回收情形 39 表3-10 LISREL符號說明 42 表3-11整體模型之配適度指標與準則 43 表4-1 整體有效樣本性別分布情形 44 表4-2 整體有效樣本年齡分布情形 45 表4-3 整體有效樣本教育程度分布情形 46 表4-4 整體有效樣本職業分布情形 47 表4-5 整體有效樣本居住地區分布情形 48 表4-6 整體有效樣本月收入分布情形 49 表4-7 受測者是否曾使用過自助服務機台之分布情形 50 表4-8 受測者曾經使用過自助服務機台之場所分布情形 51 表4-9 受測者曾使用過之自助服務機台類型分布情形 52 表4-10 受測者曾使用過之自助服務機台類型分布情形 53 表4-11 線性結構模型之相關參數說明 56 表4-12 整體及高、低科技準備度樣本模型之配適度衡量結果彙整表 60 表4-13 整體樣本衡量模式之評估 62 表4-14 高科技準備度樣本衡量模式之評估 64 表4-15 低科技準備度樣本衡量模式之評估 66 表4-16 整體樣本假說之驗證結果 70 表4-17 高科技準備度樣本假說之驗證結果 73 表4-18 低科技準備度樣本假說之驗證結果 76 表4-19 整體樣本路徑效果分析表 78 表4-20 高科技準備度樣本路徑效果分析表 81 表4-21 低科技準備度樣本路徑效果分析表 84 圖目錄 圖1-1 全球自助服務機台市場規模 2 圖1-2 各地區自助服務機台市場規模 3 圖1-3 本研究之研究流程 9 圖2-1 科技接受模型(Technology Acceptance Model) 16 圖2-2 期望確認理論(Expectation Confirmation Theory) 17 圖2-3 IS接受後持續使用模式 18 圖2-4 科技持續理論(Technology Continuance Theory) 19 圖3-1 研究架構 25 圖4-1 本研究整體模型之線性結構關係圖 55 圖4-2 整體樣本路徑結構分析圖 77 圖4-3 高科技準備度樣本路徑結構分析圖 80 圖4-4 低科技準備度樣本路徑結構分析圖 83 |
| 參考文獻 |
中文文獻 1.王嵩竑、游小美、林永樑(2008)。以結構方程式模式探討護理人員對無線射頻辨識系統接受度─科技接受模型觀點。醫院,41(1),54–64。 2.周文賢(2004)。多變量統計分析SAS/STAT使用方法。臺北市:智勝文化事業有限公司。 3.張仲甫(2022)。從期望確認觀點了解關係連結對消費者持續使用品牌APP的影響。國立中山大學資訊管理學系研究所未出版碩士論文。 4.黃芳銘(2015)。結構方程式-理論與應用。臺北市:五南圖書出版股份有限公司。 英文文獻 1.Ajzen, I.(1985). From Intentions to Actions: A theory of planned behavior. In J. Kuhl & J. Beckmann(Eds.), Action Control: From Cognition to Behavior(pp. 11–39). Springer. 2.Bagozzi, R. P., & Yi, Y.(1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. 3.Bao, Z., & Zhu, Y.(2022). Why customers have the intention to reuse food delivery apps: Evidence from China. British Food Journal, 124(1), 179–196. 4.Bateson, J. E. G.(1985). Self-service consumer: An exploratory study. Journal of Retailing, 61(3), 49–76. 5.Beatson, A., Coote, L. V. & Rudd J. M.(2006). Determining consumer satisfaction and commitment through self-Service technology and personal service usage. Journal of Marketing Management, 22(7-8), 853–882. 6.Bentler, P. M.(1983). Confirmatory factor analysis via noniterative estimation: A fast, inexpensive method. Journal of Marketing Research, 20(1), 87–95. 7.Bentler, P. M., & Bonett, D. G.(1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. 8.Bhattacherjee, A.(2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370. 9.Bhattacherjee, A., Perols, J., & Sanford, C.(2008). Information technology continuance: A theoretic extension and empirical test. Journal of Computer Information Systems, 49(1), 17–26. 10.Bitner, M. J., Ostrom, A. L., & Meuter, M. L.(2002). Implementing successful self-service technologies. Academy of Management Executive, 16(4), 96–109. 11.Breckler, S. J.(1984). Empirical validation of affect, behavior, and cognition as distinct components of attitude. Journal of Personality and Social Psychology, 47(6), 1191–1205. 12.Castro, D., Atkinson, R. D., & Ezell, S. J.(2010). Embracing the self service economy. Washington, DC: Information Technology and Innovation Foundation. 13.Chau, P. Y. K., & Hu, P. J. H.(2002). Investigating healthcare professionals’ decisions to accept telemedicine technology: An empirical test of competing theories. Information & Management, 39(4), 297–311. 14.Chen, S.-C., Liu, M.-L., & Lin, C.-P.(2013). Integrating technology readiness into the expectation-confirmation model: An empirical study of mobile services. Cyberpsychology, Behavior, and Social Networking, 16(8), 604–612. 15.Chiu, C.-M., Hsu, M.-H., Lai, H., & Chang, C.-M.(2014). Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents. Decision Support Systems, 53(4), 835–845. 16.Choi, Y. R., Wen, H., Chen, M., & Yang, F.(2021). Sustainable determinants influencing habit formation among mobile short-video platform users. Sustainability, 13(1), 1–16. 17.Curran, J. M., & Meuter, M. L.(2005). Self-service technology adoption: Comparing three technologies. Journal of Services Marketing, 19(2), 103–113. 18.Curran, J. M., Meuter, M. L., & Surprenant, C. F.(2003). Intentions to use self-service technologies: A confluence of multiple attitudes. Journal of Service Research, 5(3), 209–224. 19.Dabholkar, P. A.(1996). Consumer evaluations of new technology-based self-service options: An investigation of alternative models of service quality. International Journal of Research in Marketing, 13(1), 29–51. 20.Dabholkar, P. A., & Bagozzi, R. P.(2002). An attitudinal model of technology-based self-service: Moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science, 30(3), 184–201. 21.Davis, F. D.(1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. 22.Fan, A., Wu, L., Miao, L., & Mattila, A.S.(2020). When does technology anthropomorphism help alleviate customer dissatisfaction after a service failure? – The moderating role of consumer technology self-efficacy and interdependent self-construal. Journal of Hospitality Marketing & Management, 29(3), 269–290. 23.Fishbein, M.(1967). Attitude and the prediction of behavior. In M. Fishbein (Ed.), Readings in attitude theory and measurement(pp. 477–492). Wiley. 24.Fishbein, M., & Ajzen, I.(1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley. 25.Fishbein, M., & Ajzen, I.(1980). Understanding Attitudes and Predicting Social Behavior. Englewood Cliffs, NJ: Prentice-Hall. 26.Guner, H., & Acarturk, C.(2020). The use and acceptance of ICT by senior citizens: a comparison of technology acceptance model(TAM) for elderly and young adults. Universal Access in the Information Society, 19, 311–330. 27.Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L.(1998). Multivariate Data Analysis, 5(3), 207–219. 28.Hong, S.-J., Thong, J. Y. L., & Tam, K. Y.(2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile Internet. Decision Support Systems, 42(3), 1819–1834. 29.Hu, L., & Bentler, P. M.(1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. 30.Hwang, J., & Kim, D. J.(2007). Customer self-service systems: The effects of perceived web quality with service contents on enjoyment, anxiety, and e-trust. Decision Support Systems, 43(3), 746–760. 31.Jöreskog, K.G.(1973). Analysis of covariance structures. In Multivariate analysis—III(pp. 263–285). Academic Press. 32.Kauffman, R.J. & L. Lally(1994). A value platform analysis perspective on customer access information technology. Decision Science, 25(4), 767-794. 33.Kim, M., & Qu, H.(2014). Travelers' behavioral intention toward hotel self-service kiosks usage. International Journal of Contemporary Hospitality Management, 26(2), 225–245. 34.Lee, M.C.(2010). Explaining and predicting user's continuance intention toward e-learning: An extension of the expectation-confirmation model. Computers & Education, 54(2), 506–516. 35.Liao, C., Palvia, P., & Chen, J.-L.(2009). Information technology adoption behavior life Cycle: Toward a technology continuance theory(TCT). International Journal of Information Management, 29(4), 309–320. 36.Likert, R.(1932). A technique for the measurement of attitudes. Archives of psychology. 37.Liljander, V., Gillberg, F., Gummerus, J., & van Riel, A.(2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Services, 13(3), 177–191. 38.Lin, C. S., Wu, S., & Tsai, R. J.(2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683–693. 39.Lin, C.-H., Shih, H.-Y., & Sher, P. J.(2007). Integrating technology readiness into technology acceptance: The TRAM model. Psychology & Marketing, 24(7), 641–657. 40.Lin, J. C., & Chang, H.(2011). The role of technology readiness in self-service technology acceptance. Managing Service Quality: An International Journal, 21(4), 424–444. 41.Lin, J. S. C., & Hsieh, P. L.(2006). The role of technology readiness in customers' perception and adoption of self-service technologies. International Journal of Service Industry Management, 17(5), 497–517. 42.Lovelock, C., & Gummesson, E.(2004). Whither services marketing? In search of a new paradigm and fresh perspectives. Journal of Service Research, 7(1), 20–41. 43.Lovelock, C., & Young, R. F.(1979). Look to consumers to increase productivity. Harvard Business Review, 57(3), 168–178. 44.Mathieson, K.(1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173–191. 45.Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J.(2000). Self-service technologies: Understanding customer satisfaction with technology-based service encounters. Journal of Marketing, 64(3), 50-64. 46.Meuter, M. L., & Bitner, M. J.(1998). Self-service technologies: Extending service frameworks and identifying issues for research. In D. Grewal & C. Pechmann(Eds.), Marketing theory and applications(Vol. 9, pp. 12–19). American Marketing Association. 47.Mick, D. G., & Fournier, S.(1998). Paradoxes of technology: Consumer cognizance, emotions, and coping strategies. Journal of Consumer Research, 25(2), 123–143. 48.Minge, M., Bürglen, J., & Cymek, D. H.(2014). Exploring the potential of gameful interaction design of ICT for the elderly. In C. Stephanidis(Ed.), HCI International 2014—Posters’ Extended Abstracts: International Conference, HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014. Proceedings, Part II(pp. 304–309). Springer. 49.Moon, J.-W., & Kim, Y.-G.(2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217–230. 50.Mosavi, S. A., & Ghaedi, M.(2012). An examination of the effects of some factors on behavioral intentions(A New Model). Global Advanced Research Journal of Management and Business Studies, 1(5), 163–172. 51.Nascimento, B., Oliveira, T., & Tam, C.(2018). Wearable technology: What explains continuance intention in smartwatches. Journal of Retailing and Consumer Services, 43, 157-169. 52.Oliver, R. L.(1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460–469. 53.Oliver, R. L. & Bearden, W. O.(1985). Disconfirmation Processes and Consumer Evaluations in Product Usage. Journal of Business Research ,13(3), 495-507. 54.Parasuraman, A.(2000). Technology readiness index(TRI): A multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307–320. 55.Patterson, P. G., & Spreng, R. A.(1997). Modelling the relationship between perceived value, satisfaction and repurchase intentions in a business-to-business, services context: An empirical examination. International Journal of Service Industry Management, 8(5), 414–434. 56.Roca, J. C., Chiu, C. M. & Martínez, F. J.(2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies ,64(8), 683-696. 57.Schneider, B., & Bowen, D. E.(1995). Winning the service game. Harvard Business School Press. 58.Shang, D., & Wu, W.(2017). Understanding mobile shopping consumers’ continuance intention. Industrial Management & Data Systems, 117(1), 213–227. 59.Shiau, W.-L., & Chau, P. Y. K.(2016). Understanding behavioral intention to use a cloud computing classroom: A multiple model comparison approach. Information & Management, 53(3), 355–365. 60.Sivadass, E., & Prewitt, J. L. B.(2000). An Examination of the Relationship Between Service Quality, Customer Satisfaction and Store Loyalty. International Journal of Retail & Distribution Management, 28(2), 73–82. 61.Son, M., & Han, K.(2011).Beyond the technology adoption: Technology readiness effects on post-adoption behavior. Journal of Business Research, 64(11), 1178–1182. 62.Suki, N. M., & Ramayah, T.(2010). User acceptance of the e-government services in Malaysia: Structural equation modelling approach. Interdisciplinary Journal of Information, Knowledge, and Management, 5, 395–413. 63.Susanto, A., Chang, Y., & Ha, Y.(2016). Determinants of continuance intention to use the smartphone banking services: An extension to the expectation-confirmation model. Industrial Management & Data Systems, 116(3), 508–525. 64.Tandon, U., Kiran, R., & Sah, A. N.(2016). Customer satisfaction using website functionality, perceived usability and perceived usefulness towards online shopping in India. Information Development, 32(5), 1657–1673. 65.Taylor, S., & Todd, P. A.(1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144–176. 66.Thong, Y. L., Hong, S. J. & Tam, K. Y.(2006). The Effects of Post-Adoption Beliefs on the Expectation-Confirmation Model for Information Technology Continuance. International Journal of Human Computer Studies ,64(9), 799-810. 67.Tsikriktsis, N.(2004). A technology readiness-based taxonomy of customers: A replication and extension. Journal of Service Research, 7(1), 42–52. 68.Tucker, L. R., & Lewis, C.(1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10. 69.Venkatesh, V., & Davis, F. D.(2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. 70.Venkatesh, V., Thong, J. Y. L., & Xu, X.(2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. 71.Walker Rhett, H., Craig‐Lees, M., Hecker, R., & Francis, H.(2002). Technology‐enab led service delivery: An investigation of reasons affecting customer adoption and rejection. International Journal of Service Industry Management, 13(1), 91-106. 72.Weng, G. S., Zailani, S., Iranmanesh, M., & Hyun, S. S.(2017). Mobile taxi booking application service’s continuance usage intention by users. Transportation Research Part D: Transport and Environment, 57, 207-216. 73.Woodside, A. G., Frey, L. L., & Daly, R. T.(1989). Linking service quality, customer satisfaction, and behavioral intentions. Journal of Health Care Marketing, 9(4), 5–17. 74.Yeoh, W., Lee, A. S. H., Ng, C., Popovic, A., & Han, Y.(2024).Examining the acceptance of blockchain by real estate buyers and sellers. Information Systems Frontiers, 26(3), 1121–1137. 75.Zeithaml, V. A., Berry, L. L., & Parasuraman, A.(1996). The behavioral consequences of service quality. Journal of Marketing, 60(3), 31–46. 76.Zhao, Y., & Bacao, F.(2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? International Journal of Hospitality Management, 91,102683. 77.Zhu, Z., Nakata, C., Sivakumar, K., & Grewal, D.(2013). Fix it or leave it? Customer recovery from self-service technology failures. Journal of Retailing, 89(1), 15–29. 網路資源 1.MarketsandMarkets.(2024). Interactive kiosk market: Global forecast to 2029.Retrieved from https://www.marketsandmarkets.com/Market-Reports/interactive-kiosks-market-221409707.html 2.Market.us.(2025). Interactive kiosk statistics 2025 by input technology. Retrieved from https://scoop.market.us/interactive-kiosk-statistics/ |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信