| 系統識別號 | U0002-1506201209455600 | 
|---|---|
| DOI | 10.6846/TKU.2012.00579 | 
| 論文名稱(中文) | 關於導數為有界的函數的Hermite-Hadamard型不等式的研究 | 
| 論文名稱(英文) | Inequalities of Hermite-Hadamard type for functions whose derivatives in absolute values are quasi-convex | 
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 | 
| 系所名稱(中文) | 中等學校教師在職進修數學教學碩士學位班 | 
| 系所名稱(英文) | Executive Master's Program In Mathematics for Teachers | 
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 100 | 
| 學期 | 2 | 
| 出版年 | 101 | 
| 研究生(中文) | 謝瑾瑜 | 
| 研究生(英文) | Chin-Yu Hsieh | 
| 學號 | 799190078 | 
| 學位類別 | 碩士 | 
| 語言別 | 繁體中文 | 
| 第二語言別 | 英文 | 
| 口試日期 | 2012-06-09 | 
| 論文頁數 | 53頁 | 
| 口試委員 | 指導教授
                                    
                                    -
                                    楊國勝 委員 - 李武炎 委員 - 曾貴麟 | 
| 關鍵字(中) | Hermite-Hadamard 不等式 準凸函數 | 
| 關鍵字(英) | Hermite-Hadamard inequality Quasi-convex function. | 
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 | 本研究的主要目的為建立有關導數為有界且為準凸函數(quasi-convex function)的 Hermite-Hadamard 不等式之推廣,以及估計一般化的中點公式誤差的界限。所得到的研究結果可應用於藉由中點公式去估計積分之近似誤差。 | 
| 英文摘要 | The main purpose of this paper is to establish some inequalities of Hermite-Hadamard type for functions whose derivatives in absolute values are quasi-convex , and some error estimates for the generalized midpoint formula . The obtained results can be used to give estimates for the approximation error of the integral by the use of the midpoint formula . | 
| 第三語言摘要 | |
| 論文目次 | 中文摘要 i 英文摘要 ii 目 次 iii 一、 前言 1 二、 主要的結果 5 三、 中點公式之應用 19 參考文獻 25 附錄 1. Introduction 27 2. Main results 31 3. Applications to the midpoint formula 46 References 52 | 
| 參考文獻 | [1]  M , Alomari , M.Darus , and S.S. Dragomir , Inequlities of ermite-Hadamard’s
    type for function , whose derivatives absolute values are quasi-convex , 
    Punjab University J.Math.submitted .
[2]  S.S. Dragomir , Two mappings in connection to Hadamard’s inequalities , J. 
    Math. Anal. Appl. , 167 (1992) , 49-56.
[3]  S.S. Dragomir and R.P. Agarwal , Two inequalities for differentiable mappings
    and applications to special means of real numbers and to trapezoidal formula , 
    Appl. Math. Lett , 11(1998) , 91-95.
[4]  S.S. Dragomir , Y.J. Cho and S.S. Kim, Inequalities of Hadamard’s type for 
    Lipschitzian mappings and their applications , J. Math. Anal. Appl. 245(2000) , 
    489-501.
[5]  S.S. Dragomir and S. Wang , A new inequality of Ostrowski’s type in   
    norm and applications to some special means and for some numerical 
    quadrature rule , Tamkang J. Math , 28(1997) , 239-244 . 
[6]  S.S. Dragomir and S. Wang . Applications of Ostrowski’s inequality to the 
    estimation of error bounds for some special means and for some numerical 
    quadrature rule , Appl. Math. Lett . , 11(1998) ,105-109 .
[7]  D.A. Ion, Some estimates on the Hermite-Hadamard inequality through 
    quasi-convex functions , Annals of University of Craiova , Math. Comp. Sci.
    Ser. , 34(2007) , 82-87 .
[8]  U.S. Kirmaci , Inequalities for differentiable mappings and applications to 
    special means of real numbers to midpoint formula , Appl. Math. Comp., 
    147(2004) , 137-146.
[9]  U.S. Kirmaci and M.E. Ozdemir , On some inequalities for differentiable 
    mappings and applications to special means of real numbers and to midpoint 
    formula , Appl. Math. Comp. 153(2004) , 361-368 .
[10]  M.E. Ozdemir , Atheorem on mappings with bounded derivatives with 
     applications to quadrature rules and means, Appl. Math . Comp, 138(2003) , 
     425-434
[11]  C.E.M. Pearce and J. Pecaric , Inequalities for differectiable mappings with 
     application to special means , Appl. Math. Comp. 13(2000) , 51-55.
[12]  G.S. Yang , D.Y. Hwang and K.I.. Tseng , Some inequalities for differentiable 
     convex and concave mappings , Comp. Math. Appl. , 47(2004), 207-216. | 
| 論文全文使用權限 | 
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信