| 系統識別號 | U0002-1409202522552500 |
|---|---|
| DOI | 10.6846/tku202500774 |
| 論文名稱(中文) | 糖化血色素變化趨勢與微血管併發症風險之關聯:台灣人體生物資料庫之孟德爾隨機化研究 |
| 論文名稱(英文) | Trends in Hemoglobin A1C and the Risk of Microvascular Complications: A Mendelian Randomization Study Using Taiwan Biobank |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 統計學系應用統計學碩士班 |
| 系所名稱(英文) | Department of Statistics |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 邱奕彙 |
| 研究生(英文) | Yi-Hui Chiu |
| 學號 | 612650068 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-07-17 |
| 論文頁數 | 112頁 |
| 口試委員 |
指導教授
-
謝璦如(arhsieh@gm.ntpu.edu.tw)
口試委員 - 張書瑋 口試委員 - 廖文伶 |
| 關鍵字(中) |
糖化血色素 微血管併發症 孟德爾隨機化 單樣本孟德爾隨機化 雙樣本孟德爾隨機化 多變量孟德爾隨機化 時間變化孟德爾隨機化 |
| 關鍵字(英) |
HbA1c microvascular complications Mendelian Randomization One-sample Mendelian Randomization Two-sample Mendelian Randomization Multivariable Mendelian Randomization Time-varying Mendelian Randomization |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
糖尿病是全球最常見的疾病之一,若未妥善控制,將引發多種併發症,其中腎臟病更是台灣十大死因之一。然而,目前的研究尚未能明確證實糖尿病與腎臟病之間的因果關係。因此,本研究採用孟德爾隨機化(Mendelian Randomization, MR)方法,以探討兩者之間的潛在因果關聯。研究中以糖化血色素作為糖尿病相關指標,並選用血中尿素氮、血中肌酸酐、eGFR、尿液肌酸酐、尿中微蛋白及ACR作為腎功能指標。 由於這些生物指標會隨時間變化,若未將時間因素納入考量,可能導致推論偏差。傳統MR分析並未處理時間變異問題,因此本研究進一步應用多變量孟德爾隨機化(Multivariable Mendelian Randomization, MVMR)及時間變化孟德爾隨機化(Time-Varying Mendelian Randomization, TVMR),以觀察不同時間或年齡層下的因果關係差異;同時使用CAUSE模型考慮具水平多效性的遺傳工具,以避免多效性干擾因果推論,最後再比較各方法所得結果。 研究結果顯示,在傳統MR方法中,雙樣本分析大多未發現糖化血色素與腎功能指標具有顯著關聯;然而,單樣本分析則呈現大部分指標與糖化血色素之間存在顯著關聯。CAUSE模型在單樣本與雙樣本間的結果差異不大,顯示將水平多效性納入模型後可有效降低偏誤。多變量孟德爾隨機化於單樣本與雙樣本中亦呈現相近結果,但部分指標不具顯著性。至於時間變化孟德爾隨機化,其結果相對不佳,僅顯示糖化血色素與尿中微蛋白間存在顯著相關。 綜合上述,本研究結果支持糖化血色素與部分腎功能指標之間可能存在一定的因果關係。未來研究可利用具有更多測量時間點的大型資料庫,以增加樣本數與分析可信度。同時,時間因素仍是影響疾病的重要關鍵,需在研究設計中更加審慎納入考量。以上結果可作為醫學領域後續研究與臨床應用的重要參考。 |
| 英文摘要 |
Diabetes mellitus is one of the most prevalent diseases worldwide, and poor glycemic control can lead to multiple complications, among which kidney disease is a leading cause of mortality in Taiwan. However, existing studies have not clearly established a causal relationship between diabetes and kidney disease. Therefore, this study applied Mendelian Randomization (MR) to investigate the potential causal association between diabetes-related traits and kidney function. Glycated hemoglobin (HbA1c) was used as the indicator for diabetes, while blood urea nitrogen, serum creatinine, estimated glomerular filtration rate (eGFR), urinary creatinine, urinary microalbumin, and albumin-to-creatinine ratio (ACR) were employed as indicators of kidney function. Since these biomarkers vary over time, failing to account for temporal dynamics may bias the results. Traditional MR does not address time-dependent changes; hence, this study further employed Multivariable Mendelian Randomization (MVMR) and Time-Varying Mendelian Randomization (TVMR) to explore potential differences in causal associations across different time points or age groups. In addition, the CAUSE model was used to account for horizontal pleiotropy by identifying pleiotropic genetic variants, thereby reducing potential bias, and results across different methods were compared. The findings indicated that, under traditional MR, most two-sample analyses did not reveal significant associations between HbA1c and kidney function indicators, whereas one-sample analyses demonstrated significant associations for the majority of indicators. Results from the CAUSE model showed little difference between one-sample and two-sample analyses, suggesting that accounting for pleiotropy effectively reduced bias. Similarly, MVMR produced consistent results across both one-sample and two-sample settings, though some associations were not statistically significant. In contrast, TVMR yielded less robust findings, with HbA1c showing a significant association only with urinary microalbumin. In conclusion, this study provides evidence supporting a potential causal relationship between HbA1c and certain kidney function indicators. Future research may benefit from the use of large-scale databases with repeated measurements to increase statistical power and robustness. Moreover, as time remains a critical factor influencing disease progression, it should be carefully incorporated into study designs. These findings offer valuable insights for future research and potential clinical applications. |
| 第三語言摘要 | |
| 論文目次 |
目錄 圖目錄 IV 表目錄 V 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 孟德爾隨機化(Mendelian Randomization) 3 2.2 多變量孟德爾隨機化(Multivariable MR) 6 2.3 時間變化孟德爾隨機化(Time-Varying MR, TVMR) 7 第三章 資料介紹 10 3.1 台灣人體生物資料庫 10 3.2 糖化血色素(HbA1c) 11 3.3 微血管併發症 12 3.3.1 血中尿素氮(BUN) 14 3.3.2 血中肌酸酐(CREATININE) 15 3.3.3 估計腎絲球過濾率(eGFR) 16 3.3.4 尿液肌酸酐(CREATININE_URINE) 17 3.3.5 尿中微蛋白(MICROALB) 18 3.3.6 尿液白蛋白與肌酸酐比值(ACR) 19 第四章 研究方法 21 4.1 研究流程 21 4.2 品質管制(Quality Control) 23 4.3 全基因組關聯研究(GWAS) 24 4.4 表型全基因組關聯研究(PheWAS) 25 4.5 孟德爾隨機化方法(MR) 25 4.5.1 單樣本孟德爾隨機化方法 28 4.5.2 雙樣本孟德爾隨機化方法 28 4.5.3 CAUSE 模型 29 4.6 多變量孟德爾隨機化方法(MVMR) 31 4.7 時間變化孟德爾隨機化方法(TVMR) 33 4.7.1 真實資料 36 4.7.2 模擬資料 37 第五章 研究結果 38 5.1 品質管制(Quality Control) 38 5.2 全基因組關聯分析(GWAS) 40 5.3 表型全基因組關聯研究(PheWAS) 42 5.4 孟德爾隨機化方法(MR) 45 5.4.1 單樣本孟德爾隨機化方法 45 5.4.2 雙樣本孟德爾隨機化方法 53 5.4.3 CAUSE 模型 58 5.5 多變量孟德爾隨機化方法 69 5.5.1 單樣本MVMR 69 5.5.2 雙樣本MVMR 74 5.6 時間變化孟德爾隨機化方法 76 5.7 方法比較 83 5.7.1 MR模型比較 83 5.7.2 解決MVMR異質性問題 88 第六章 結論與討論 90 6.1 結論 90 6.2 討論 91 第七章 參考文獻 94 第八章 附錄 102 圖目錄 圖 3 - 1糖化血色素與血中尿素氮之散佈圖 15 圖 3 - 2糖化血色素與血中肌酸酐之散佈圖 16 圖 3 - 3糖化血色素與eGFR之散佈圖 17 圖 3 - 4糖化血色素與尿中肌酸酐之散佈圖 18 圖 3 - 5糖化血色素與尿中微蛋白之散佈圖 19 圖 3 - 6 糖化血色素與ACR之散佈圖 20 圖 4 - 1研究流程圖 22 圖 4 - 2 孟德爾隨機化示意圖 26 圖 4 - 3 Causal 示意圖 29 圖 4 - 4 遺傳變異不受干擾因子影響示意圖 30 圖 4 - 5遺傳變異經干擾因子影響暴露示意圖 31 圖 4 - 6 多變量孟德爾隨機化示意圖 32 圖 4 - 7 時間變化孟德爾隨機化示意圖 34 圖 5 - 1尿中微蛋白以特徵函數為基底之TVMR結果 82 圖 5 - 2尿中微蛋白以多項式為基底之TVMR結果 82 表目錄 表 2 - 1 MR相關的研究 5 表 3 - 1糖化血色素統計量 12 表 3 - 2結果變數統計量 14 表 3 - 3 eGFR分級 16 表 4 - 1 QC步驟說明 23 表 4 - 2糖化血色素調整情況 37 表 5 - 1 QC結果 39 表 5 - 2單樣本MR結果 52 表 5 - 3雙樣本MR結果 57 表 5 - 4單樣本CAUSE模型結果 63 表 5 - 5雙樣本CAUSE模型結果 68 表 5 - 6未調整單樣本MVMR結果 73 表 5 - 7調整單樣本MVMR結果 73 表 5 - 8未調整雙樣本MVMR結果 76 表 5 - 9單樣本調整TVMR工具變量強度 80 表 5 - 10單樣本未調整TVMR工具變量強度 80 表 5 - 11雙樣本未調整TVMR工具變量強度 80 表 5 - 12單樣本調整之真實資料水平多效性 81 表 5 - 13雙樣本未調整之水平多效性 81 表 5 - 14單樣本調整之模擬資料水平多效性 81 表 5 - 15單樣本未調整之真實資料水平多效性 81 表 5 - 16方法比較 86 表 5 - 17有因果關係的方法中具水平多效性之SNP 87 表 5 - 18具異質性之血中肌酸酐之cause結果 89 |
| 參考文獻 |
ACCORD Study Group, Cushman, W. C., Evans, G. W., Byington, R. P., Goff, D. C., Grimm, R. H., Cutler, J. A., Simons-Morton, D. G., Basile, J. N., Corson, M. A., Probstfield, J. L., Katz, L., Peterson, K. A., Friedewald, W. T., Buse, J. B., Bigger, J. T., Gerstein, H. C., & Ismail-Beigi, F. (2010). Effects of intensive blood-pressure control in type 2 diabetes mellitus. The New England Journal of Medicine, 362(17), 1575–1585. https://doi.org/10.1056/NEJMoa1001286 An, J., Nichols, G. A., Qian, L., Munis, M. A., Harrison, T. N., Li, Z., Wei, R., Weiss, T., Rajpathak, S., & Reynolds, K. (2021). Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diabetes Research & Care, 9(1), e001847. https://doi.org/10.1136/bmjdrc-2020-001847 Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40(4), 304–314. https://doi.org/10.1002/gepi.21965 Burgess, S., Butterworth, A., & Thompson, S. G. Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37(7), 658–665. https://doi.org/10.1002/gepi.21758 Burgess, S., & Thompson, S. G. (2015). Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. American Journal of Epidemiology, 181(4), 251–260. https://doi.org/10.1093/aje/kwu283 Burrows, N. R. (2022). Reported Cases of End-Stage Kidney Disease—United States, 2000–2019. MMWR. Morbidity and Mortality Weekly Report, 71. https://doi.org/10.15585/mmwr.mm7111a3 Cao, Z., Wu, Y., Li, Q., Li, Y., & Wu, J. (2022). A causal relationship between childhood obesity and risk of osteoarthritis: Results from a two-sample Mendelian randomization analysis. Annals of Medicine, 54(1), 1636–1645. https://doi.org/10.1080/07853890.2022.2085883 Chan, L. S., Malakhov, M. M., & Pan, W. (2024). A novel multivariable Mendelian randomization framework to disentangle highly correlated exposures with application to metabolomics. The American Journal of Human Genetics, 111(9), 1834–1847. https://doi.org/10.1016/j.ajhg.2024.07.007 Dai, Z., Wu, Y., Chen, J., Huang, S., & Zheng, H. (2024). Assessment of relationships between frailty and chronic pain: A bidirectional two-sample Mendelian randomisation study. Age and Ageing, 53(1), afad256. https://doi.org/10.1093/ageing/afad256 Davey Smith, G., & Ebrahim, S. (2003). ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?*. International Journal of Epidemiology, 32(1), 1–22. https://doi.org/10.1093/ije/dyg070 Dong, S.-S., Zhang, K., Guo, Y., Ding, J.-M., Rong, Y., Feng, J.-C., Yao, S., Hao, R.-H., Jiang, F., Chen, J.-B., Wu, H., Chen, X.-F., & Yang, T.-L. (2021). Phenome-wide investigation of the causal associations between childhood BMI and adult trait outcomes: A two-sample Mendelian randomization study. Genome Medicine, 13(1), 48. https://doi.org/10.1186/s13073-021-00865-3 Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., Seshasai, S. R. K., Gobin, R., Kaptoge, S., Di Angelantonio, E., Ingelsson, E., Lawlor, D. A., Selvin, E., Stampfer, M., Stehouwer, C. D. A., Lewington, S., Pennells, L., Thompson, A., Sattar, N., White, I. R., Ray, K. K., & Danesh, J. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet (London, England), 375(9733), 2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9 Ference, B. A., Holmes, M. V., & Smith, G. D. (2021). Using Mendelian Randomization to Improve the Design of Randomized Trials. Cold Spring Harbor Perspectives in Medicine, 11(7), a040980. https://doi.org/10.1101/cshperspect.a040980 Goyal, R., Singhal, M., & Jialal, I. (2023). Type 2 Diabetes. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK513253/ Hartwig, F. P., Davey Smith, G., & Bowden, J. (2017). Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. International Journal of Epidemiology, 46(6), 1985–1998. https://doi.org/10.1093/ije/dyx102 Health, N. C. for C. D. P. and H. P. (US) O. on S. and. (2014). The Health Consequences of Smoking—50 Years of Progress. Centers for Disease Control and Prevention (US). Hemani, G., Zheng, J., Elsworth, B., Wade, K., Haberland, V., Baird, D., Laurin, C., Burgess, S., Bowden, J., Langdon, R., Tan, V. Y., Yarmolinsky, J., Shibab, H., Timpson, N., Evans, D., Relton, C., Martin, R., Davey Smith, G., Gaunt, T., … The MR-Base Collaboration. (2018). The MR-Base platform supports systematic causal inference across the human phenome. In eLife (Version 0.5.8, Vol. 7, p. e34408) [R]. https://doi.org/10.7554/eLife.34408 (Original work published 2016) Huang, Y.-Y., Lin, K.-D., Jiang, Y.-D., Chang, C.-H., Chung, C.-H., Chuang, L.-M., Tai, T.-Y., Ho, L.-T., & Shin, S.-J. (2012). Diabetes-related kidney, eye, and foot disease in Taiwan: An analysis of the nationwide data for 2000–2009臺灣糖尿病相關腎臟、眼睛和足部疾病:2000-2009年全國數據分析. Journal of the Formosan Medical Association, 111(11), 637–644. https://doi.org/10.1016/j.jfma.2012.09.006 Jeremy A. Labrecque, & Sonja A. Swanson. (n.d.). Interpretation and Potential Biases of Mendelian Randomization Estimates With Time-Varying Exposures. American Journal of Epidemiology. https://doi.org/10.1093/aje/kwy204 Jin, R., Lu, J., Cheng, S., & Shi, S. (2025). Differential Causal Associations of Chronic Gastritis and Ulcerative Colitis with Melanoma Risk: A Mendelian Randomization Study Using Large-Sample GWAS Data. Clinical, Cosmetic and Investigational Dermatology, 18, 1551–1563. https://doi.org/10.2147/CCID.S525937 KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. (2013). Kidney International Supplements, 3(1), 4. https://doi.org/10.1038/kisup.2012.76 Khan, S. S., Ning, H., Wilkins, J. T., Allen, N., Carnethon, M., Berry, J. D., Sweis, R. N., & Lloyd-Jones, D. M. (2018). Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiology, 3(4), 280–287. https://doi.org/10.1001/jamacardio.2018.0022 Li, P., Wang, H., Guo, L., Gou, X., Chen, G., Lin, D., Fan, D., Guo, X., & Liu, Z. (2022). Association between gut microbiota and preeclampsia-eclampsia: A two-sample Mendelian randomization study. BMC Medicine, 20(1), 443. https://doi.org/10.1186/s12916-022-02657-x Lin, C.-C., Li, C.-I., Liu, C.-S., Liao, L.-N., Yang, C.-W., Lin, C.-H., Yang, S.-Y., & Li, T.-C. (2023). Association of high-sensitivity C-reactive protein and diabetic nephropathy in patients with type 2 diabetes: A Mendelian randomization study. BMJ Open Diabetes Research & Care, 11(1), e003197. https://doi.org/10.1136/bmjdrc-2022-003197 Lin, Y.-L., Lin, S.-H., Wang, H.-H., Hsu, W.-C., Hung, S.-Y., Chiou, Y.-Y., Liou, H.-H., Chang, M.-Y., Ho, L.-C., Wu, C.-F., & Lee, Y.-C. (2025). Role of Metformin in Preventing New-Onset Chronic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Pharmaceuticals (Basel, Switzerland), 18(1), 95. https://doi.org/10.3390/ph18010095 Long, Y., Tang, L., Zhou, Y., Zhao, S., & Zhu, H. (2023). Causal relationship between gut microbiota and cancers: A two-sample Mendelian randomisation study. BMC Medicine, 21(1), 66. https://doi.org/10.1186/s12916-023-02761-6 Ma, X., Liu, R., Xi, X., Zhuo, H., & Gu, Y. (2025). Global burden of chronic kidney disease due to diabetes mellitus, 1990-2021, and projections to 2050. Frontiers in Endocrinology, 16. https://doi.org/10.3389/fendo.2025.1513008 Marees, A. T., De Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie‐Claire, C., & Derks, E. M. (2018). A tutorial on conducting genome‐wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2), e1608. https://doi.org/10.1002/mpr.1608 Morrison, J., Knoblauch, N., Marcus, J., Stephens, M., & He, X. (n.d.). Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nüesch, E., Dale, C., Palmer, T. M., White, J., Keating, B. J., van Iperen, E. P., Goel, A., Padmanabhan, S., Asselbergs, F. W., EPIC-Netherland Investigators, Verschuren, W., Wijmenga, C., Van der Schouw, Y., Onland-Moret, N., Lange, L. A., Hovingh, G., Sivapalaratnam, S., Morris, R. W., Whincup, P. H., … Casas, J. P. (2016). Adult height, coronary heart disease and stroke: A multi-locus Mendelian randomization meta-analysis. International Journal of Epidemiology, 45(6), 1927–1937. https://doi.org/10.1093/ije/dyv074 O’Connor, L. J., & Price, A. L. (2018). Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nature Genetics, 50(12), 1728–1734. https://doi.org/10.1038/s41588-018-0255-0 Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., Smith, A. E., Dalton, B. E., Duprey, J., Cruz, J. A., Hagins, H., Lindstedt, P. A., Aali, A., Abate, Y. H., Abate, M. D., Abbasian, M., Abbasi-Kangevari, Z., Abbasi-Kangevari, M., ElHafeez, S. A., Abd-Rabu, R., … Vos, T. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. The Lancet, 402(10397), 203–234. https://doi.org/10.1016/S0140-6736(23)01301-6 Ousmane, D., Liu, J., Liu, Z., Zhou, Z., Liu, L., & Wang, J. (2025). Mendelian randomization analysis of modifiable risk factors for breast cancer. Discover Oncology, 16(1), 1123. https://doi.org/10.1007/s12672-025-02412-7 Pierce, B. L., & Burgess, S. (2013). Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators. American Journal of Epidemiology, 178(7), 1177–1184. https://doi.org/10.1093/aje/kwt084 Sanderson, E., Glymour, M. M., Holmes, M. V., Kang, H., Morrison, J., Munafò, M. R., Palmer, T., Schooling, C. M., Wallace, C., Zhao, Q., & Smith, G. D. (2022). Mendelian randomization. Nature Reviews. Methods Primers, 2, 6. https://doi.org/10.1038/s43586-021-00092-5 Satirapoj, B., & Adler, S. G. (2014). Comprehensive approach to diabetic nephropathy. Kidney Research and Clinical Practice, 33(3), 121–131. https://doi.org/10.1016/j.krcp.2014.08.001 Schwarz, P. (2025). IDF global clinical practice recommendations for managing type 2 diabetes – 2025. Diabetes Research and Clinical Practice, 222. https://doi.org/10.1016/j.diabres.2025.112158 Shi, J., Swanson, S. A., Kraft, P., Rosner, B., De Vivo, I., & Hernán, M. A. (2022). Mendelian Randomization With Repeated Measures of a Time-varying Exposure: An Application of Structural Mean Models. Epidemiology, 33(1), 84–94. https://doi.org/10.1097/EDE.0000000000001417 Shi, L., Xue, Y., Yu, X., Wang, Y., Hong, T., Li, X., Ma, J., Zhu, D., & Mu, Y. (2024). Prevalence and Risk Factors of Chronic Kidney Disease in Patients With Type 2 Diabetes in China: Cross-Sectional Study. JMIR Public Health and Surveillance, 10(1), e54429. https://doi.org/10.2196/54429 Sproviero, W., Winchester, L., Newby, D., Fernandes, M., Shi, L., Goodday, S. M., Prats-Uribe, A., Alhambra, D. P., Buckley, N. J., & Nevado-Holgado, A. J. (2021). High Blood Pressure and Risk of Dementia: A Two-Sample Mendelian Randomization Study in the UK Biobank. Biological Psychiatry, 89(8), 817–824. https://doi.org/10.1016/j.biopsych.2020.12.015 Su, J., Hu, J., Liu, H., Guo, Y., Shi, Y., Zheng, Y., Dong, Z., Liu, J., Xu, Z., Yu, X., Mei, J., Peng, J., Wang, L., & Liu, Q. (2025). Causal role of the plasma lipidome in the occurrence and progression of chronic kidney disease: A two-sample Mendelian randomization study. Diabetology & Metabolic Syndrome, 17(1), 205. https://doi.org/10.1186/s13098-025-01764-y Tang, M., & Chen, L. (2025). Mendelian randomization in cancer research: Opportunities and challenges. Infectious Agents and Cancer, 20(1), 37. https://doi.org/10.1186/s13027-025-00672-0 Tian, H., & Burgess, S. (2023). Estimation of time-varying causal effects with multivariable Mendelian randomization: Some cautionary notes. International Journal of Epidemiology, 52(3), 846–857. https://doi.org/10.1093/ije/dyac240 Tian, H., Patel, A., & Burgess, S. (2024). Estimating Time‐Varying Exposure Effects Through Continuous‐Time Modelling in Mendelian Randomization. Statistics in Medicine, 43(27), 5166–5181. https://doi.org/10.1002/sim.10222 Vansteelandt, S., & Joffe, M. (2014). Structural Nested Models and G-estimation: The Partially Realized Promise. Statistical Science, 29(4). https://doi.org/10.1214/14-STS493 Verbanck, M., Chen, C.-Y., Neale, B., & Do, R. (2018). Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nature Genetics, 50(5), 693–698. https://doi.org/10.1038/s41588-018-0099-7 Xu, Y., Xiao, T., Yang, J., Wang, J., Wang, B., & Qiao, C. (2025). A Mendelian randomization study on the causal association of circulating cytokines with diabetic nephropathy. Journal of Diabetes Investigation, 16(7), 1274–1283. https://doi.org/10.1111/jdi.70051 Yeh, Y.-K., Lin, K.-H., Sheu, W. H.-H., Lo, S.-H., Yeh, Y.-P., Huang, C.-N., Hwu, C.-M., & Lu, C.-H. (2024). Determinants of early chronic kidney disease in patients with recently diagnosed type 2 diabetes mellitus: A retrospective study from the Taiwan Diabetes Registry. BMC Nephrology, 25(1), 133. https://doi.org/10.1186/s12882-024-03567-1 |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信