| 系統識別號 | U0002-1406202310541200 |
|---|---|
| DOI | 10.6846/tku202300081 |
| 論文名稱(中文) | 對於工作站式筆電的熱管散熱器之散熱能力提升 |
| 論文名稱(英文) | Improvement of Power Capacity for Station Laptop with Heat Pipe Cooling Module |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 機械與機電工程學系碩士班 |
| 系所名稱(英文) | Department of Mechanical and Electro-Mechanical Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 111 |
| 學期 | 2 |
| 出版年 | 112 |
| 研究生(中文) | 張寶鑽 |
| 研究生(英文) | Pachara Lagsanawilad |
| 學號 | 610375015 |
| 學位類別 | 碩士 |
| 語言別 | 英文 |
| 第二語言別 | |
| 口試日期 | 2023-06-07 |
| 論文頁數 | 74頁 |
| 口試委員 |
指導教授
-
王鈺詞(YTLWH@mail.tku.edu.tw)
口試委員 - 康尚文 口試委員 - 黃祖胤 |
| 關鍵字(中) |
GPU CPU 熱管 散熱器 DOE1 |
| 關鍵字(英) |
GPU CPU Heat pipe Heat sink design of experiment 1 (DOE1) |
| 第三語言關鍵字 | |
| 數位影音資料 | |
| 學科別分類 | |
| 中文摘要 |
論文提要內容:
本研究的重點是提高專門為了影片編輯和3D建模設計的高性能筆記型電腦冷卻模組的功率容量(power capacity)。其中是在 Compal Electronic Company 的熱對策部門實習期間專門使用 Dell Precision 筆記型電腦進行。
增加冷卻系統功率容量對筆記型電腦性能的直接影響。 原裝散熱模組支持 30W 的 CPU 容量和 60W 的 GPU 容量。 通過增加冷卻系統功率容量, 可以顯著提高筆記型電腦的性能。
為滿足這一需求而進行了設計修改,主要集中在熱管、CPU區域的散熱片和風扇尺寸調整上。 在完成這些改進後,創建了一個 3D 模型(本文稱為 design of experiment 1( DOE1) 模塊)並在生成物理原型之前進行了模擬。 接續在實驗中針對原始散熱模組進行測試。
將 design of experiment 1 (DOE1) 模組與原始散熱模組進行比較的結果表明,冷卻系統的能力從 30W CPU 和 60W GPU 增加到 30W CPU 和 84.9W GPU。 這表明擴大風道、增加散熱器和增加風扇尺寸有效地增強了系統的冷卻能力。 應該注意的是,這些設計修改受到每台筆記型電腦的特定限制所施加的限制,例如用於擴展組件的可利用空間。
|
| 英文摘要 |
This study focuses on enhancing the power capacity of the cooling module in a high-performance workstation laptop designed for video editing and 3D modeling tasks. The research was conducted during an internship at Compal Electronic Company's Thermal Department, specifically working with the Dell Precision workstation laptop. The direct impact of electricity on laptop performance creates a need to improve the cooling system's power capacity. The initial thermal module could support a CPU power of 30W and a GPU power of 60W. Performance on the laptop can be sharply increased by raising the capabilities. Design modifications were made to address this need, primarily focusing on heat pipes, heatsinks in the CPU area, and fan size adjustments. After finalizing these improvements, a 3D model (referred to as the design of experiment 1 (DOE1) module) was created and simulations were conducted before producing the physical prototype. The prototype was then tested against the original thermal module in practical experiments. The experimental results comparing the design of experiment 1 (DOE1) module with the original module demonstrated an increase in the cooling system's capability from 30W CPU and 60W GPU to 30W CPU and 84.9W GPU. This indicates that enlarging the duct, adding a heatsink, and increasing the fan size effectively enhances the cooling capacity of the system. It should be noted that these design modifications are subject to limitations imposed by each laptop's specific constraints, such as available space for scaling up components. |
| 第三語言摘要 | |
| 論文目次 |
Table of Contents Acknowledgment I Abstract II Content V Figure of content VIII Figure of content IX Table of content X Chapter 1 Introduction 1 1.1. Introduction of internship 1 1.2 Company Introduction 2 1.3 Background 3 1.4 Purpose 5 1.5 Scope of work 5 Chapter 2 Technology and literature review 6 2.1 Technology review 6 2.1.1 Central Processing Unit (CPU) 6 2.1.2 Graphics Processing Unit (GPU) 11 2.2 Theory review 13 2.2.1 Conduction: 15 2.2.2 Convection: 16 2.2.3 Radiation: 17 2.2.4 Steady state conduction 18 2.2.5 Transient heat conduction 26 2.2.6 Fundamental of convection 26 2.3 Literature review 29 2.3.1 Heat pipe 29 2.3.2 Vapor chamber 38 2.3.3 Heat sink 39 Chapter 3 Experiment and Simulation 42 3.1 Procedure Flowchart 42 3.2 3D model & Simulation 44 3.2.1 3D model of original module. 44 3.2.1.1 Dimensions of sections in the original module. 45 3.2.2 Design of experiment 1(DOE1) model. 49 3.2.2.1 Dimensions of sections in the original module. 52 3.3 Setting and boundary condition in simulation. 57 3.4 Experimental and Experimental setting 60 3.4.1 Experimental tools 61 3.4.2 Experiment 62 3.4.2.1 Experiment 1 62 3.4.2.2 Experiment 2 62 3.4.2.2 Experimental 3 64 Chapter 4 Result and comparison 61 4.1 Simulation result 61 4.1.1 Simulation 1 result for original module 61 4.1.2 Simulation 2 result for original module 62 4.1.3 Simulation 3 result for design of experiment (DOE1) module 63 4.2 Experimental results 64 4.2.1 Experimental 1 results 64 4.2.2 Experiment 2 results 66 4.2.3 Experimental 3 results 68 4.3 Comparison 70 4.3.1 Validate between simulation of original module with experimental 1. 70 4.3.2 Comparison between simulation 1 with simulation 2. 71 4.3.3 Comparison between experimental 1 with experimental 2 71 4.3.4 Comparison between experimental 2 with experimental 3 72 Chapter 5 Conclusion and Discussion 72 5.1 Conclusion 72 5.2 Discussion 73 Reference 74 List of Figure Figure 2. 1 CPU Component (component that generate the heat) 9 Figure 2. 2 Component of GPU 13 Figure 2. 3 a) The flow rate of the fluid passing through the face area b) Under steady conditions. 14 Figure 2. 4 conduction heat transfer 15 Figure 2. 5 Convection heat transfer 17 Figure 2. 6 Heat transfer through a wall is one dimensional. 19 Figure 2. 7 Schematic for convection resistance 20 Figure 2. 8 Thermal resistance network for heat transfer through two-layer 21 Figure 2. 9 Typical experimental for find thermal contact resistance. 22 Figure 2. 10 Volume element of a fin 23 Figure 2. 11 Fin enhances heat transfer. 24 Figure 2. 12 Various formulas and translators used to calculate each fin 25 Figure 2. 13 Heat transfer from a hot surface to the surrounding fluid by convection 26 Figure 2. 14 a) cylindrical heat pipe. b) flattened heat pipe. 32 Figure 2. 15 Schematic of thermal resistance in paper 34 Figure 2. 16 Thermal resistance with heat dissipation 34 Figure 2. 17 Concept design for leading edge of heat pipe 35 Figure 2. 18 Schematic finned flat heat pipe. 36 Figure 2. 19 Vapor chamber solution 38 Figure 2. 20 schematic heat sink assembly 40 Figure 2. 21 Heat sink model 40 List of Figure Figure 3. 1 Procedure flowchart 42 Figure 3. 2 Original Thermal module from dell precision 7780 44 Figure 3. 3 3D disassembles model of original module. 44 Figure 3. 4 Heat pipe 45 Figure 3. 5 CPU die casting and CPU block dimension. 46 Figure 3. 6 GPU die casting and GPU block dimension. 46 Figure 3. 7 Fan cover dimension. 47 Figure 3. 8 Fin dimension. 47 Figure 3. 9 Fan and Fan direction dimension 48 Figure 3. 10 3D disassembles model of design of experiment 1 (DOE1) module. 49 Figure 3. 11 a) original module design b) design of experiment 1(DOE1) design 50 Figure 3. 12 Heat pipe dimensions. 52 Figure 3. 13 CPU die casting and CPU bolck dimensions 53 Figure 3. 14 GPU die casting and GPU block dimensions. 53 Figure 3. 15 Fan cover dimensions. 54 Figure 3. 16 Fin dimensions. 54 Figure 3. 17 Fan and Fan direction dimensions. 55 Figure 3. 18 Heat Sink dimensions 55 Figure 3. 19 Boundary condition setting in simulation program (Simcenter Flotherm). 58 Figure 3. 20 Substant in simulation program (Simcenter Flotherm). 58 Figure 3. 21 CPU&GPU power setting in simulation program 59 Figure 3. 22 Acoustic level setting in simulation program 59 Figure 3. 23 Chamber for control various in experimental 60 Figure 3. 24 a) Furmark Tool b) GPU monitor 61 Figure 3. 25 Locations that were installed thermocouple in original module. 64 Figure 3. 26 Locations that were installed thermocouple in design of experiment 1 (DOE1) module. 65 List of Tables Table 2. 1 Interl CPU used in Dell Precision 7000 series (History) 9 Table 2. 2 NVIDIA graphics card for workstation laptop 12 Table 3. 1 Details of the information in original module. 45 Table 3. 2 Sizes of sections in original module 48 Table 3. 3 Parameters that use in case studies. 51 Table 3. 4 Details of the information in design of experiment 1 (DOE1) module 52 Table 3. 5 Sizes of sections in DOE1 module. 56 Table 3. 6 Boundary conditions in simulation program (Simcenter flotherm) 57 Table 3. 7 Setting material on simulation program (Simcenter flotherm) 57 Table 3. 8 Experiment 1 setting in original module. 62 Table 3. 9 Experiment 2 setting in original module. 63 Table 3. 10 Experiment 2 setting in design of experiment 1 (DOE1) module. 65 Table 4. 1 Simulation 1 result for original module 61 Table 4. 2 Simulation 2 result for original module 62 Table 4. 3 Simulation 3 result for design of experiment (DOE1) module 63 Table 4. 4 Experimental 1 result 64 Table 4. 5 Power behavior in the system that use original module. 65 Table 4. 6 Experiment 2 result. 66 Table 4. 7 Power result when increase GPU power in system. 67 Table 4. 8 Experimental 3 result 68 Table 4. 9 Power result when increase GPU power in system (design of experiment1 (DOE1) module). 69 Table 4. 10 Comparison the result between original module in experimental 1 and experimental2 71 Table 4. 11 Comparison the result between original module in experimental 2 with design of experiment3 (DOE 1) module 72 Table 4. 12 The graph shows the power capability comparison of original module and design of experiment 1 (DOE1) module 73 |
| 參考文獻 |
Reference [1] D. Technologies, Precision 7680 Service Manual: Dell Inc, 2023. [2] Y. A. Cengel and A. J. Ghajar, Heat and mass transfer: Fundamentals and applications, 5 ed. New York: McGraw-Hill Professional, 2014, p. 946. [3] A. Faghri, "Review and Advances in Heat Pipe Science and Technology," Journal of Heat Transfer, vol. 134, no. 12, 2012, doi: 10.1115/1.4007407. [4] L. L. Vasiliev, "Heat pipes in modern heat exchangers," Applied Thermal Engineering, vol. 25, no. 1, pp. 1-19, 2005, doi: 10.1016/j.applthermaleng.2003.12.004. [5] W. Sanhan, K. Vafai, N. Kammuang-Lue, P. Terdtoon, and P. Sakulchangsatjatai, "Numerical simulation of flattened heat pipe with double heat sources for CPU and GPU cooling application in laptop computers," Journal of Computational Design and Engineering, vol. 8, no. 2, pp. 524-535, 2021, doi: 10.1093/jcde/qwaa091. [6] M. Ghanbarpour, R. Khodabandeh, and K. Vafai, "An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid," Heat and Mass Transfer, vol. 53, no. 3, pp. 973-983, 2016, doi: 10.1007/s00231-016-1871-9. [7] P. R. Mashaei, M. Shahryari, H. Fazeli, and S. M. Hosseinalipour, "Numerical simulation of nanofluid application in a horizontal mesh heat pipe with multiple heat sources: A smart fluid for high efficiency thermal system," Applied Thermal Engineering, vol. 100, pp. 1016-1030, 2016, doi: 10.1016/j.applthermaleng.2016.02.111. [8] Tharawadee, "An Investigation of Thermal Characteristics of a Sintered-Wick Heat Pipe with Double Heat Sources," American Journal of Applied Sciences, vol. 10, no. 9, pp. 1077-1086, 2013, doi: 10.3844/ajassp.2013.1077.1086. [9] Intagun, "Flattening Effect on Heat Transfer Characteristics of a Sintered-Wick Heat Pipe," American Journal of Applied Sciences, vol. 10, no. 7, pp. 760-766, 2013, doi: 10.3844/ajassp.2013.760.766. [10] M. Mochizuki, T. Nguyen, K. Mashiko, Y. Saito, T. Nguyen, and V. Wuttijumnong, "A Review of Heat Pipe Application Including New Opportunities," Frontiers in Heat Pipes, vol. 2, no. 1, 2011, doi: 10.5098/fhp.v2.1.3001. [11] A. Faghri and Y. Cao, "Transient Multidimensional Analysis of Nonconventional Heat Pipes With Uniform and Nonuniform Heat Distributions," journal of Heat Transfer, no. 112(3), pp. 995-1002, 1991. [12] M. H. A. Elnaggar, M. Z. Abdullah, and S. R. R. Munusamy, "Experimental and Numerical Studies of Finned L-Shape Heat Pipe for Notebook-PC Cooling," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 6, pp. 978-988, 2013, doi: 10.1109/tcpmt.2013.2245944. [13] H. Y. Zhang, D. Pinjala, and K. Navas, "Development of-thermal solutions for high performance laptop," 2002. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信