系統識別號 | U0002-1301202216315200 |
---|---|
DOI | 10.6846/TKU.2022.00302 |
論文名稱(中文) | 新冠疫情影響恐慌指數及其應用之實證研究 |
論文名稱(英文) | Studies on the applications of the fear index under the effect of the COVID-19 pandemic |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 財務金融學系博士班 |
系所名稱(英文) | Department of Banking and Finance |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 110 |
學期 | 1 |
出版年 | 111 |
研究生(中文) | 蕭奕凡 |
研究生(英文) | I-Fan Hsiao |
學號 | 806530076 |
學位類別 | 博士 |
語言別 | 英文 |
第二語言別 | |
口試日期 | 2022-01-08 |
論文頁數 | 73頁 |
口試委員 |
指導教授
-
邱建良(100730@mail.tku.edu.tw)
口試委員 - 邱建良 口試委員 - 俞海琴 口試委員 - 林忠機 口試委員 - 蕭榮烈 口試委員 - 涂登才 口試委員 - 鄭東光 口試委員 - 黃健銘 指導教授 - 張鼎煥(ctingh@gmail.com) |
關鍵字(中) |
恐慌指數 新冠疫情 外溢效果 門檻效果 風險價值 |
關鍵字(英) |
The Fear Index COVID-19 Spillover Effect Threshold Effect Value at Risk |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文以美國、歐洲、日本及香港等四國之恐慌指數及其對應之指數為軸,以三種角度切入研究新冠疫情對金融市場之影響。首先以多變量GARCH模型研究恐慌指數於各國間之外溢效果,分析各國恐慌指數於新冠疫情前後之連動性差異;第二,使用縱橫資料門檻模型為研究方法,以門檻效果之差異判別股市對恐慌指數之反應變化;最後,針對GARCH(1,1)及RiskMetrics等兩種常用之風險價值評估模型,分析其於新冠疫情後之效用變化。第一部份之實證結果顯示,在外溢效果之研究中,各國之恐慌指數除歐洲波動率指數指數於疫情前外,與前一交易日相比皆有顯著之收斂效果。另外,與疫情前相比,各國恐慌指數間之連動性於疫情後有顯著提升之現象。顯著相關之組合由8組提升至9組外,正向影響更由3組提升至6組,顯示恐慌指數之敏感性及外溢效果,經新冠疫情之衝擊後有顯著提升。第二部份,於門檻效果之研究之中,本論文發現恐慌指數變動在股市交易日對於隔日報酬率影響具有門檻效果,但效果僅在疫情前存在,疫情後無顯著門檻。而當日恐慌指數變動,於疫情前後皆對當日股市報酬率有顯著負向影響,但其影響性於疫情後較弱。另外,恐慌指數變動在股市交易日對於隔日之成交量影響亦具有門檻效果,而其門檻值於疫情後有所下降。顯示市場投資者因應恐慌指數變化而進行停損或是停利的行為較為溫和。第三部份之實證結果顯示,因投資市場因疫情產生結構性改變,GARCH(1,1)模型之風險價值評估效果並無法達到標準。而RiskMetrics模型將恐慌指數代入後,其風險價值評估效果較佳。 |
英文摘要 |
As the characteristics of the fear index are informative. indicative, and objective, this study focuses on how the COVID-19 pandemic affect the performance and the application of the fear index in relation to financial markets of 4 countries from 3 perspectives, including the CBOE VIX in US, the VSTOXX in EU, the Nikkei Average Volatility Inde in Japan, and the HSI Volatility Index in Hong Kong. In part 1, the study adopts the multivariate GARCH model to investigate the fear spillover effect between four fear indices. The empirical results suggest that the fear spillover has strengthened since the COVID-19 impact as significant correlations increase from 8 to 9 combinations from 4 fear indices; moreover, the positive ones increase from 3 to 6. In part 2, the study adopts the Panel Threshold model to discover the threshold effect regarding how investors are influenced by the fear index before and after the COVID-19 impact. The empirical results indicate that the threshold effect exists in the cross-day effect from the changes in the fear index to stock returns rate only before the COVID-19 pandemic; whereas, the intraday effect exists regardless of the COVID-19 pandemic, and the effect is weaker during the pandemic. Furthermore, the threshold effect is also found in the cross-day effect regarding changes in the fear index to trade volume changes, and the threshold value is lowered during the pandemic period, suggesting that investors are relatively moderate in exiting the markets. In part 3, the two VaR models – the GARCH(1,1) and the RiskMetrics model, were examined regarding their feasibility and accuracy after the impact from the COVID-19. Due to the obvious structural change in the stock markets, the GARCH(1,1) model are found less accurate than the RiskMetrics model considering the fear index as the risk factor from the empirical results provided in this study. |
第三語言摘要 | |
論文目次 |
CONTENTS PART I................. 1 Abstract.................2 1. Introduction.................2 2. Literature Review.................5 3. Methodology.................8 3.1 Unit root test.................9 3.2 Cointegration test.................10 3.3 BEKK multivariate GARCH model.................12 4. Data analysis.................14 4.1 Data description.................14 4.2 Unit root tests and cointegrating test.................15 4.3 Observations among fear indices.................17 5 Multivariate GARCH(1,1) – the BEKK model.................19 5.1 Interpreting the long-term fear spillover effect.................19 5.2 Changes from the impact of the COVID-19 pandemic.................24 6. Conclusion.................27 PART II.................29 Abstract.................30 1. Introduction.................30 2. Literature Review.................34 2.1 Discovering investor sentiment and their behaviors.................34 2.2 The Convid-19 impact on investors.................35 2.3 The panel threshold model on study of investor sentiment.................36 3. Methodology.................37 3.1 Single threshold estimation and definition of variables.................37 3.2 Testing for a single threshold.................40 3.3 Asymptotic distribution of slope coefficient.................41 4. Empirical results.................42 5. Conclusion.................50 PART III.................53 Abstract.................54 1. Introduction.................54 2. Data and Methodology.................56 3. Empirical Results.................59 3.1 The historical simulation approach – the GARCH (1,1) model.................60 3.2 The RiskMetrics method.................61 4. Conclusion.................65 References.................67 LIST OF TABLES PART I Table 1. Descriptive Statistics of fear indices.................15 Table 2. The ADF and PP unit root tests on fear indices.................16 Table 3. Cointegrating vector test.................17 Table 4. Multivariate correlations between the VIX, VSTOXX, NKVI and VHSI.................23 Table 5. Multivariate correlations between the VIX, VSTOXX, NKVI and VHSI in the COVID-19 pandemic period.................26 PART II Table 1. Descriptive Statistics.................47 Table 2. Threshold Estimates.................47 Table 3. Regression estimates - Return (RTN).................49 Table 4. Regression estimates - Volume (VOL).................50 PART III Table 1. Descriptive Statistics.................59 Table 2. VaR results from the GARCH(1,1) model.................63 Table 3. VaR results from the RiskMetrics model.................64 LIST OF FIGURES PART I Figure 1. Daily prices of the fear indices.................19 PART II Figure 1. Pre-COVID construction of the confidence intervals (trade volume) .................48 Figure 2. During-COVID construction of the confidence intervals (trade volume) .................48 |
參考文獻 |
Part I: Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory, (B.N. Petrov and F. Cs ä ki, eds.). Akademiai Ki à do, Budapest, 267-281. Andersen, T., & Bollerslev, T. (1998). Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review, 39, 885-905. Baele, L. (2005). Volatility spillover effects in European equity markets. Journal of Financial and Quantitative Analysis, 40, 373-401. Badshah, I. (2018). Volatility spillover from the fear index to developed and emerging markets. Emerging Markets Finance and Trade, 54, 27-40. Baur, D., & Jung, R.C. (2006). Return and volatility linkages between the US and the German stock market. Journal of International Money and Finance, 25, 598-613. Baker, M., & Wurgler, J. (2003). Investor sentiment and the cross-section of stock returns. The Journal of Finance, 61, 1645-1680. Barberis, N., Shleifer, A., & Vishny, R. (1997). A model of investor sentiment. Journal of Financial Economics, 49, 307-343. Blair, B., Poon, S., & Taylor S. (1999). Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high frequency index returns. Journal of Econometrics, 105, 5-26. Broyden, C. (1970). The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. Ima Journal of Applied Mathematics, 6, 76-90. Broyden, C. (1970). The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm. Ima Journal of Applied Mathematics, 6, 222-231. Brenner, M., & Galai, A. (1989). New financial instruments for hedge changes in volatility. Financial Analysts Journal, 45, 61-65. Brown, G., & Cliff, M. T. (2001). Investor sentiment and the near-term stock market. Journal of Empirical Finance, 11, 1-27. Chen, C. (2014). Does fear spill over? Asia-Pacific Journal of Financial Studies, 43, 465-491. Dickey, D., & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74, 427-431. Engle, R., & Kroner, K. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11, 122-150. Fama, E.F. (1970). Efficient capital markets: a review of theory and empirical work. The Journal of Finance 25, 383-417. Fleming, J., Ostdiek B., & Whaley, R. E. (1995). Predicting stock market volatility: A new measure. Journal of Futures Markets, 15, 265-302. Forbes, K.J., & Rigobón, R. (2002). No contagion, only interdependence: measuring stock market comovements. Journal of Finance, 57, 2223-2261. Giot, P. (2005). Relationships between implied volatility indexes and stock index returns. Journal of Portfolio Management, 31, 92-100. Granger, C.W. (1981). Some properties of time series data and their use in econometric model specification. Journal of Econometrics, 16, 121-130. Guo, H., & Whitelaw, R. (2006). Uncovering the risk–return relation in the stock market. The Journal of Finance, 61, 1433-1463 Harvey, C., & Whaley, R. E. (1992). Market volatility prediction and the efficiency of the S&P 100 index option market. Journal of Financial Economic, 31, 43-73. Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12, 231-254 Kim, J., & Ryu, D. (2015). Return and volatility spillovers and cojump behavior between the U.S. and Korean stock markets. Emerging Markets Finance and Trade 51, S3-S17. Kumar, A., & Lee, C.M. (2006). Retail investor sentiment and return comovements. The Journal of Finance, 61, 2451-2486. Lehnert, T., & Honcoop, D. (2006). Can sentiment be predicted to have cross-sectional effects? Journal of Financial Forecasting, 1, 55-62 MacKinnon, J. (1996). Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics, 11, 601-618. Osterwald-Lenum, M. (1992). A note with quantiles of the asymptotic distribution of the maximum likelihood cointegration rank test statistics. Oxford Bulletin of Economics and Statistics, 54, 461-472. Peter C., Phillips, B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75, 335-346. Sarwar, G. (2012). Is VIX an investor fear gauge in BRIC equity markets. Journal of Multinational Financial Management, 22, 55-65. Sarwar, G. (2019). Transmission of risk between U.S. and emerging equity markets. Emerging Markets Finance and Trade 55, 1171 - 1183. Whaley, R. E. (2000). The investor fear gauge. The Journal of Portfolio Management, 26, 12-17. Part II: Baker, M.P., & Wurgler, J. (2006). Investor Sentiment and the Cross-Section of Stock Returns. The Journal of Finance, 61(4), 1645-1680. Brown, G.W., & Cliff, M.T. (2001). Investor Sentiment and the Near-Term Stock Market. Journal of Empirical Finance, 11(1), 1-27. Brana, S., & Prat, S. (2016). The effects of global excess liquidity on emerging stock market returns: Evidence from a panel threshold model. Economic Modelling, 52(Part A), 26-34. Chan, K.S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Annals of Statistics, 21(1), 520-533. Chen, M., Chen, P., & Lee, C. (2013). Asymmetric effects of investor sentiment on industry stock returns: Panel data evidence. Emerging Markets Review, 14, 35 - 54. Corbet, S., Larkin, C., & Lucey, B.M. (2020). The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies. Finance Research Letters, 35, 101554 - 101554. Conlon, T., & McGee, R.J. (2020). Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Research Letters, 35, 101607 - 101607. Cross, R., Grinfeld, M., Lamba, H., & Seaman, T.L. (2005). A threshold model of investor psychology. Physica A-statistical Mechanics and Its Applications, 354, 463-478. Da, Z., Engelberg, J., & Gao, P. (2015). The Sum of All FEARS: Investor Sentiment and Asset Prices. Review of Financial Studies, 28(1), 1-32. García, D. (2013). Sentiment During Recessions. The Journal of Finance, 68(3), 1267-1300. Griffith, J.M., Najand, M., & Shen, J. (2019). Emotions in the Stock Market. Journal of Behavioral Finance, 21(1), 42 - 56. Fama, E.F. (1970). Efficient capital markets: a review of theory and empirical work. Journal of Finance, 25(2), 383-417. Hansen, B.E. (1996). Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis. Econometrica, 64(2), 413-430. Hansen, B.E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(2), 345-368. Salisu, A.A., Ebuh, G.U., & Usman, N. (2020). Revisiting oil-stock nexus during COVID-19 pandemic: Some preliminary results. International Review of Economics & Finance, 69, 280 - 294. Salisu, A.A., Raheem, I.D., & Ndako, U.B. (2020). The inflation hedging properties of gold, stocks and real estate: A comparative analysis. Resources Policy, 66, 101605. Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496 - 101496. Sherif, M. (2020). The impact of Coronavirus (COVID-19) outbreak on faith-based investments: An original analysis. Journal of Behavioral and Experimental Finance, 28, 100403 - 100403. Stambaugh, R.F., Yu, J., & Yuan, Y. (2012). The Short of It: Investor Sentiment and Anomalies. Journal of Financial Economics, 104(2), 288-302. Sun, Y., Wu, M., Zeng, X., & Peng, Z.R. (2021). The impact of COVID-19 on the Chinese stock market: Sentimental or substantial? Finance Research Letters, 38, 101838. Kadilli, A. (2015). Predictability of stock returns of financial companies and the role of investor sentiment: A multi-country analysis ☆. Journal of Financial Stability, 21, 26-45. Karavias, Y., Spilioti, S.N., & Tzavalis, E. (2020). Investor sentiment effects on share price deviations from their intrinsic values based on accounting fundamentals. Review of Quantitative Finance and Accounting, 56, 1593-1621. Kurov, A. (2010). Investor Sentiment and the Stock Market’s Reaction to Monetary Policy. Journal of Banking & Finance, 34(1), 139-149. Lee, J., Yen, P., & Chan, K.C. (2014). Investor Sentiment and Investment Behavior in the Chinese Mutual Fund Market. The Chinese Economy, 47(1), 38 - 52. Wang, J., Shao, W., & Kim, J. (2020). Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures. Chaos, Solitons, and Fractals, 136, 109896 - 109896. You, W., Guo, Y., & Peng, C. (2017). Twitter's daily happiness sentiment and the predictability of stock returns. Finance Research Letters, 23, 58-64. Zeren, F., & Hızarcı, A.E. (2020). The impact of COVID-19 coronavirus on stock markets: Evidence from selected countries. Bulletin of Accounting and Finance Reviews, 3(1), 78-84. Zouaoui, M., Nouyrigat, G., & Beer, F.M. (2011). How Does Investor Sentiment Affect Stock Market Crises? Evidence from Panel Data. The Financial Review, 46(4), 723-747. Part III: Alexander, C., Lazar, E., & Stanescu, S. (2013). Forecasting VaR using analytic higher moments for GARCH processes. International Review of Financial Analysis, 30, 36-45. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327. Giot, P. (2005). Implied volatility indexes and daily Value at Risk models. The Journal of Derivatives ,12(4), 54-64. Jorion, P. (1997). Value at risk: the new benchmark for controlling market risk. Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 3(2), 73–84. Lin, C.H., Kao, T.C., & Chiou, C.Y. (2005). Incorporating extreme value theory into GARCH model for Value-at-Risk. Journal of Management, 22(1), 133-154. López, J.A. (1998). Methods for evaluating Value-at-Risk estimates. Economic Review, Federal Reserve Bank of San Francisco, 3-17. Orhan, M.A., & Köksal, B. (2012). A comparison of GARCH models for VaR estimation. Expert Syst. Appl., 39(3), 3582-3592. Slim, S., Dahmene, M., & Boughrara, A. (2020). How informative are variance risk premium and implied volatility for Value-at-Risk prediction? International evidence. The Quarterly Review of Economics and Finance, 76, 22-37. Weiß, G.N. (2013). Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy. Review of Quantitative Finance and Accounting, 41(12), 179-202. Žiković, S., & Aktan, B. (2011). Decay factor optimisation in time weighted simulation - Evaluating VAR performance. International Journal of Forecasting, 27(4), 1147-1159. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信