系統識別號 | U0002-1209202310352100 |
---|---|
DOI | 10.6846/tku202300660 |
論文名稱(中文) | 可重構智慧反射面板協作無線供電通訊網路基於SWIPT技術之最小能源消耗研究 |
論文名稱(英文) | Energy Minimization for RIS-aided WPCNs with SWIPT system |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 111 |
學期 | 2 |
出版年 | 112 |
研究生(中文) | 薛慕華 |
研究生(英文) | Mu-Hua Hsueh |
學號 | 610410606 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2023-06-27 |
論文頁數 | 47頁 |
口試委員 |
指導教授
-
石貴平(kpshih@gms.tku.edu.tw)
口試委員 - 石貴平 口試委員 - 王三元 口試委員 - 陳彥達 |
關鍵字(中) |
無線供電通訊網路 可重構智慧反射面板 同步電能與訊息傳輸技術 HTT協議 無線射頻 |
關鍵字(英) |
Wireless Powered Communication Networks RIS SWIPT HTT protocol |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文在解決在無線供電通訊網路之中,電能消耗最小化之問題,本論文考慮到在供應電能的網路存取節點(Hybrid Access Point, HAP)會有電量限制的問題,在滿足網路中裝置的資料傳輸量之後,透過時間分配的方式,最佳化HAP以及無線裝置的傳輸時間並且使HAP的電能消耗達到最低,本論文加入可重構智慧反射面板(Reconfigurable Intelligent Surfaces, RIS)協助HAP向接收電能的無線裝置充電,而這些裝置皆遵循HTT (Harvest-Then-Transmit) 協議,先收取來自HAP發射的無線射頻,並轉換成電能以回傳收集到的資料。在我們設計的訊框結構中,HAP會先發送一個Beacon以確認網路中的無線裝置與RIS的所在位置,在下行鏈路 (Down Link, DL)階段中,無線裝置會直接接收來自於HAP發射的射頻、以及RIS反射來的無線射頻;而在上行鏈路(Up Link, UL)的階段之中,我們令距離HAP最近的裝置為最先傳送資料的裝置,並透過同步電能與訊息傳輸技術的技術,無線裝置可以將傳送資料後的剩餘電能傳給其他尚未傳送資料的無線裝置,以避免電能的浪費,並且舒緩雙重近遠的問題。 由於本論文是在探討最小電能消耗的問題,因此裝置必須滿足資料傳輸量的門檻、HAP的SNR(Signal-to-noise ratio)門檻值,在此條件下,我們建立最佳化方程式RISE,並且透過SQP函數將其轉為線性方程,並且提出一個Heuristic的方法來將程式運算時間降低在時間複雜度O(nlogn)。 |
英文摘要 |
In recent years, environmental concerns have gained significant attention, which is leading to widespread discussions and research in the field of Wireless Power Charging Networks (WPCN). This technology aims to supply power to Wireless Devices (WD) in the Internet of Things (IoT) ecosystem through Radio Frequency (RF) wireless charging, eliminating the need for manual battery replacements and reducing manpower costs. This paper focuses on the problem of minimizing energy consumption in Hybrid Access Points (HAPs) by utilizing Reconfigurable Intelligent Surfaces (RIS) to assist in charging WDs. The proposed system follows the Harvest-Then-Transmit (HTT) protocol, where WDs will collect RF signals transmitted by HAPs first and then convert them into electrical energy for data transmission back to the network. In our designed framework, HAPs initiate a Beacon to locate the positions of WDs and RIS in the network. During the Down Link (DL) phase, WDs directly receive RF signals from HAPs and reflect RF signals from RIS. In the Up Link (UL) phase, we prioritize the closest WD to HAP for data transmission. We employ the concept of Simultaneous Wireless Information and Power Transfer (SWIPT), allowing WDs to share the remaining energy after transmission with other devices to minimize energy wastage. Considering the objective of minimizing energy consumption, the devices must meet data transmission and HAP's Signal-to-noise ratio (SNR) thresholds. Under these conditions, we formulate the optimization equation RISE and linearize it using the Sequential Quadratic Programming (SQP) function. Additionally, we propose a heuristic approach to bound the computational time in O(nlogn) complexity. |
第三語言摘要 | |
論文目次 |
目錄 第1章 介紹 1 第2章 預備知識 7 2.1 網路模型 7 2.2 訊號雜訊比臨界值 9 2.3 同步電能與訊息傳輸技術 10 第3章 電能消耗最小化之時間配置策略 13 3.1 問題表述 13 3.2 序列二次規劃 18 第4章 啟發式解法 22 4.1 簡化演算法(RISE-S) 22 4.2 啟發式演算法(RISE-H) 23 第5章 績效評估 27 5.1 RIS部屬位置 29 5.2 電能消耗比較 34 5.3 資料傳輸量比較 37 5.4 電能使用效率比較 40 第6章 結論 43 參考文獻 44 圖目錄 圖 一、HTT協議 3 圖 二、RIS上的反射元件 7 圖 三、網路模型與通道增益係數 9 圖 四、SNR門檻值 10 圖 五、Time Switching 模式切換電路 11 圖 六、訊框結構 12 圖 七、連續週期示意圖 13 圖 八、一般場景RIS與HAP之間的距離對於電能消耗的影響圖 30 圖 九、電能消耗量與SNR變化圖 35 圖 十、裝置數量與HAP所消耗的總電能關係圖 36 圖 十一、總資料傳輸量與SNR變化圖 38 圖 十二、裝置數量與資料傳輸量關係圖 39 圖 十三、電能使用效率與SNR變化圖 41 圖 十四、裝置數量與電能使用效率關係圖 42 表目錄 表 一、網路模擬參數表格 28 表 二、一般場景中RIS與HAP之間的距離區間最低電能消耗點數 31 表 三、特殊場景中RIS與HAP之間的距離區間最低電能消耗點數 33 |
參考文獻 |
[1]. C. Kaikai, C. Zhebiao, Z. Kechen, Z. Yi-hua, and L. Jiajia, “Energy Provision Minimization in Wireless Powered Communication Networks With Network Throughput Demand: TDMA or NOMA?” IEEE Transactions on communications, vol. 67, no. 9, Sep. 2019. [2]. E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-linear energy harvesting model and resource allocation for SWIPT systems,” IEEE Wireless Communications Letters, vol. 19, no. 12, Dec. 2015. [3]. E. Frank, Michael L. Overton “A Sequential Quadratic Programming Algorithm for non-convex, non-smooth constrained optimization,” SIAM Journal on Optimization, vol. 22, no. 2, pp.474-500, Jan. 2012. [4]. F. Perez Fontan and P. Marino Espineira, “Modeling the Wireless Propagation Channel” Willey, 2008. [5]. H. Azarhava, and J. M. Niya, “Energy Efficient Resource Allocation in Wireless Energy Harvesting Sensor Networks,” IEEE Wireless Communications Letters, vol. 9, no. 7, pp. 1000–1003, Jul. 2020. [6]. H. Meng and W. Qingqing, ‘‘Energy Minimization for RIS-aided WPCNs with Non-linear Power-splitting EH Model,’’ in Proceeding of IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2022. [7]. H. Meng and W. Qingqing, “Joint Dynamic Passive Beamforming and Resource Allocation for RIS-Aided Full-Duplex WPCN,” IEEE Transactions on Wireless Communications, vol. 21, no. 7, Jul. 2022. [8]. H. Meng, W. Qingqing, and H. Vincent Poor, “Power-Efficient Passive Beamforming and Resource Allocation for RIS-Aided WPCNs,” IEEE Transactions on Wireless Communications, vol. 70, no. 5, May 2022. [9]. I. Pehlivan and S. Coleri, “Joint Optimization of Energy Transfer Scheduling and Power Control in MIMO Wireless Powered Communication Networks,” IEEE Communications Letters, vol. 24, no. 3, pp. 593-597, Mar. 2020. [10]. L. Bin, Parisa Ramezani, Dinh Thai Hoang, G. Shimin, Y. Zhen, and Abbas Jamalipour, “Optimized Energy and Information Relaying in Self-Sustainable RIS-Empowered WPCN,” IEEE Transactions on communications, vol. 69, no. 1, Jan. 2021. [11]. L. Guang-Ju, J. Shi, Y. Wenwu, L. Le, N. Xiaokai, and L. Hongzhe, “Online Energy Consumption Optimization in WPCNs With Time-Varying Energy Storage Efficiency,” IEEE Transactions on communications, vol. 71, no. 3, Mar. 2023. [12]. L. Xingquan, Z. Chiya, H. Chunlong, C. Gaojie, and Jonathon A. Chambers, “Sum-Rate Maximization in RIS-Assisted Wireless Power Communication Networks,” IEEE Internet of Things journal, vol. 8, no. 19, pp. 14959-14970, Oct 2021. [13]. M. Yan and S. Qingheng, “Energy Efficiency Maximization for RIS-Aided WPCNs,” IEEE Wireless Communications Letters, vol. 10, no. 10, Oct. 2021. [14]. M. Yan, S. Qingheng, “Energy Efficiency Maximization for RIS-Aided WPCNs,” IEEE Wireless Communications Letters, vol. 10, no. 10, Oct. 2021. [15]. Michael Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,” Sep. 2013. [16]. Özgecan Özdogan, Emil Björnson and Erik G. Larsson, “Reconfigurable Intelligent Surfaces: Physics, Propagation, and Pathloss Modeling,” IEEE Wireless Communications Letters, vol. 9, no. 5, May 2020” [17]. Q. Wu, X. Zhou, and R. Schober, “RIS-assisted wireless powered NOMA: Do we really need different phase shifts in DL and UL?” IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1493–1497, Jul. 2021. [18]. S. Bi, Y. Zeng, and R. Zhang, “Wireless Powered Communication Networks: An Overview,” IEEE Wireless Communications, vol. 23, no. 2, pp. 10-18, Apr. 2016. [19]. S. Weiping, W. Qingqing, X. Fu, S. Feng, and W. Jiangzhou, “Secrecy Throughput Maximization for RIS-Aided MIMO Wireless Powered Communication Networks,” IEEE Transactions on communications, vol. 70, no. 11, pp. 7520-7535, Nov 2022. [20]. T. D. P. Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and L. Jun, “Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges,” IEEE Wireless Communications surveys & tutorials, vol. 20, no. 1, pp. 264- 302, 1st Quart., 2018. [21]. W, Qianzhu, G. Zhengnian, X. Yongjun, and X. Hao, “Energy-efficient Optimization for RIS-assisted Wireless-powered Communication Networks,” in Proceeding of IEEE 93rd Vehicular Technology Conference, Apr. 2021. [22]. W. Qingqing, G. Xingrong, and Z. Rui, “Reconfigurable Intelligent Surfaces-Aided Wireless Energy and Information Transmission: An Overview,” Proceeding of the IEEE, vol. 110, no, Jan. 2022. [23]. W. Qingqing, Z. Xiaobo, C. Wen, L. Jun, and Z. Xiuyin, “RIS-Aided WPCNs: A New Optimization Framework for Dynamic RIS Beamforming,” IEEE Transactions on communications, vol. 21, no. 7, Jul 2022. [24]. Y. Zhanwei, C. Kaikai, H. Ping, Z. Yi-hua, and L. Xuxun, “Energy Provision Minimization in Wireless Powered Communication Networks With Node Throughput Requirement,” IEEE Transactions on communications, vol. 68, no. 7, Jul. 2019. [25]. Z. Liangsen, Z. Yulong, Z. Jia, and L. Bin, “Improving Physical Layer Security in RIS-Aided WPCN Multicast Systems via Stackelberg Game,” IEEE Transactions on communications, vol. 70, no. 3, Mar 2022. [26]. Z. Piao, W. Qingqing, and Q. Deli, “Energy Minimization for RIS-Aided WPCNs With Non-Linear Energy Harvesting Model,” IEEE Wireless Communications Letters, vol. 10, no. 11, Nov. 2021. [27]. Z. Yuan, B. Suzhi, Q. Zhi, and W. Hui, “Reconfigurable Intelligent Surfaces Enhanced User Cooperation in Wireless Powered Communication Networks,” IEEE Wireless Communications Letters, vol. 9, no. 6, Jun. 2020. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信