| 系統識別號 | U0002-1208202523544400 |
|---|---|
| DOI | 10.6846/tku202500712 |
| 論文名稱(中文) | 結合多維度鷹架與生成式人工智慧於英語口語練習虛擬情境之設計與評估 |
| 論文名稱(英文) | Evaluating and Designing Virtual Environments for Enhancing English Speaking Skills: The Role of Generative Artificial Intelligence and Multidimensional Scaffolding Integration |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 資訊管理學系碩士班 |
| 系所名稱(英文) | Department of Information Management |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 陳翌琳 |
| 研究生(英文) | Yi-Lin Chen |
| 學號 | 611630392 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-06-14 |
| 論文頁數 | 74頁 |
| 口試委員 |
指導教授
-
鄭培宇(peiyu@gms.tku.edu.tw)
口試委員 - 溫演福 口試委員 - 張昭憲 口試委員 - 鄭培宇 |
| 關鍵字(中) |
生成式人工智慧 多維度鷹架策略 英語口說 |
| 關鍵字(英) |
Generative Artificial Intelligence Multidimensional Scaffolding Strategy English Speaking |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
本研究旨在探討情境教學中整合虛擬導師與多維度鷹架策略,對學生英語口語學習成效之影響。隨著英語在國際交流中的重要性日益提升,提升學生口語表達能力已成為英語教育的關鍵課題。然而,多數學生在實際口說運用上常面臨表達困難與學習焦慮,亟需更具支持性的教學設計以提升其語言表現與學習動機。 運用生成式人工智慧技術創建導師,並融合多維度鷹架教學策略,提供具情境脈絡的語言學習活動,以促進學生參與、降低學習壓力,並強化其語言輸出能力。研究重點聚焦於探討此教學設計對學習者動機、自信心與語言表現的影響,期望藉由虛擬導師即時引導與鷹架支持,提升學生在情境互動中的口語表達能力,並為語言教學實務提供創新且具效益之參考依據。 |
| 英文摘要 |
This study examines the impact of integrating a virtual tutor with multidimensional scaffolding strategies on students’ English speaking performance. As English gains importance in global communication, improving oral expression has become essential. However, many learners face difficulties and anxiety in real-life speaking, highlighting the need for more supportive instructional designs to enhance performance and motivation. By using generative artificial intelligence to create a virtual tutor combined with multidimensional scaffolding, this study offers context-rich learning activities that boost engagement, reduce pressure, and strengthen language output. It focuses on how this approach affects learners’ motivation, confidence, and speaking skills. Through real-time guidance and scaffolding support, students’ oral abilities in situational interactions are expected to improve. |
| 第三語言摘要 | |
| 論文目次 |
目錄 目錄 iii 表目錄 v 圖目錄 vi 第一章 緒論 1 第一節 研究動機與背景 1 第二節、研究問題 5 第三節、研究目的 6 第二章 文獻探討 7 第一節 EFL (English as a Foreign Language) 7 第二節 AI應用於語言學習 9 第三節 自我決定理論 11 第四節 鷹架策略 . 14 第三章 教學設計與實驗流程 17 第一節 整體教學設計架構 17 第二節 教學流程與實驗架構 19 第三節 實驗說明 22 第六節 教學介入操作項目之差異分析 38 第七節 研究工具與量表說明 40 第八節 參與者背景與選擇 43 第四章 研究結果與討論 45 第一節 樣本結構分析 45 第二節 前後測驗與問卷分析 48 第三節 質性訪談 53 第五章 研究結果 54 第一節 研究結論 54 第二節 未來研究之建議 56 參考文獻 57 中文文獻 57 英文文獻 58 附錄一 58 表目錄 表2-1 GenAI於語言學習上的應用 10 表3-1實驗prompt整理 30 表3-2 TOEIC 題型導向之語言鷹架整理 37 表3-3教學介入操作項目之差異分析表 39 表3-4問卷之統整表 42 表4-1 描述性統計 46 表4-2前測獨立樣本t檢定結果 48 表4-3學習動機變化(ARCS)分析結果 50 表4-4自我決定構面(SDT)分析結果 51 表4-5外語學習焦慮(FLCAS)分析結果 51 表4-6 TOEIC口語表現分析結果 52 表4-7學生A訪談結果 53 表4-8學生B訪談結果 53 圖目錄 圖2-1 近側發展區(L.S. Vygotsky 1978) 14 圖3-1 實驗流程圖 21 圖3-2多益口說練習環境 31 圖3-3 AI對話輔導視窗 32 圖3-4 本系統之語音辨識 33 圖3-5虛擬導師之診斷式回饋 33 圖3-6系統架構圖 35 圖3-7口說測驗評測系統 40 圖3-8研究架構圖 43 |
| 參考文獻 |
參考文獻 中文文獻 [1]賴佳岑(2014)。《英語學習情境中心課程對國小六年級學生英語聽說能力之成效評估》。淡江大學教育科技學系碩士論文。台灣經濟論衡,2021,19(3),頁5-13。 [2]胡錦翰(2023)。探究 3D 頭像语音聊天機器人促進新加坡小學生 華語口説能力、學習態度與溝通行爲的影響。國立台灣師範大學國際與社會科學學院華語文教學系碩士。 [3]臺灣教育評論月刊,2023,12(2),頁 71-75。 英文文獻 [1] Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Child Psychology & Psychiatry & Allied Disciplines, 17, 89–100. [2] Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. [3] Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer Science & Business Media. [4] Brown, A. L., & Campione, J. C. (1994). Guided discovery in a community of learners. The MIT Press. [5] Deci, E. L. (2000). The psychology of self-determination. University Rochester Press. [6] Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. [7] Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37–52. [8] Horwitz, E. K. (2001). Language anxiety and achievement. Annual Review of Applied Linguistics, 21, 112–126. [9] Leech, G., & Svartvik, J. (2002). A communicative grammar of English. London: Routledge. [10] Mayer, R. E. (2002). Multimedia learning. Psychology of Learning and Motivation, 41, 85–139. [11] Gregersen, T. S. (2003). To err is human: A reminder to teachers of language-anxious students. Foreign Language Annals, 36, 25–32. [12] Ho, Y. K. (2003). Audio-taped dialogue journals: An alternative form of speaking practice. ELT Journal, 57(3), 269–277. [13] Van Eck, R. (2006). Digital game-based learning: It’s not just the digital natives who are restless. Educause Review, 41(2), 16. [14] Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. [15] Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G., & Fischer, F. (2008). The effect of scaffolding students’ context-generating cognitive activity in technology-enhanced case-based learning. Computers & Education, 51(2), 939–954. [16] Liu, T. Y. (2009). A context‐aware ubiquitous learning environment for language listening and speaking. Journal of Computer Assisted Learning, 25(6), 515–527. [17] Achuonye Keziah, A. (2010). A comparative study of problem-based and lecture-based learning in secondary school students’ motivation to learn science. International Journal of Science and Technology Education Research, 1(6), 126–131. [18] Unal, C., & İnan, H. Z. (2010). Students’ perceptions of a situated learning environment. Procedia-Social and Behavioral Sciences, 2(2), 2171–2175. [19] Unal, C., Unal, A., & Yalcin, S. (2010). The effect of situational learning on students’ motivation and academic achievement. Educational Sciences: Theory & Practice, 10(4), 2593–2599. [20] Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. [21] Zydney, J. M. (2010). The effect of multiple scaffolding tools on students’ understanding, consideration of different perspectives, and misconceptions of a complex problem. Computers & Education, 54(2), 360–370. [22] Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403–417. [23] Benko, S. L. (2012). Scaffolding writing instruction: Supporting students’ development in academic writing. Journal of Literacy Research, 44(4), 361–390. [24] Belland, B. R., Kim, C. M., & Hannafin, M. J. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist, 48(4), 243–270. [25] Lan, Y. J., Kan, Y. H., Hsiao, I. Y., Yang, S. J., & Chang, K. E. (2013). Designing interaction tasks in Second Life for Chinese as a foreign language learners: A preliminary exploration. Australasian Journal of Educational Technology, 29(2). [26] Walker, A., & White, G. (2013). Technology enhanced language learning: Connecting theory and practice. Oxford University Press. [27] Schmitt, N. (2014). Size and depth of vocabulary knowledge: What the research shows. Language Learning, 64(4), 913–951. [28] Dörnyei, Z. (2014). Research methods in applied linguistics: Quantitative, qualitative, and mixed methodologies (2nd ed.). Oxford University Press. [29] Huang, Y.-M., & Huang, Y.-M. (2015). A scaffolding strategy to develop handheld sensor-based vocabulary games for improving students’ learning motivation and performance. Educational Technology Research and Development, 63(5), 691–708. [30] Blake, R. (2016). Technology and the four skills. Language Learning & Technology, 20(2), 129–142. [31] Castaneda, D. A., & Cho, M. H. (2016). Use of a game-like application on a mobile device to improve accuracy in conjugating Spanish verbs. Computer Assisted Language Learning, 29(7), 1195–1204. [32] DiFrancesca, D., Nietfeld, J. L., & Cao, L. (2016). A comparison of high and low achieving students on self-regulated learning variables. Learning and Individual Differences, 45, 228–236. [33] Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87(2), 309–344. [34] Moghari, M. H., & Marandi, S. S. (2017). Triumph through texting: Restoring learners’ interest in grammar. ReCALL, 29(3), 357–372. [35] Pinter, A. (2017). Teaching young language learners. Oxford University Press. [36] Sun, Z., Lin, C. H., You, J., Shen, H. J., Qi, S., & Luo, L. (2017). Improving the English-speaking skills of young learners through mobile social networking. Computer Assisted Language Learning, 30(3–4), 304–324. [37] Zumstein, D., & Hundertmark, S. (2017). CHATBOTS—An interactive technology for personalized communication, transactions and services. IADIS International Journal on WWW/Internet, 15(1). [38] Wang, S. Y., Chang, S. C., Hwang, G. J., & Chen, P. Y. (2018). A microworld-based role-playing game development approach to engaging students in interactive, enjoyable, and effective mathematics learning. Interactive Learning Environments, 26(3), 411–423. [39] Rodríguez-Aflecht, G., Jaakkola, T., Pongsakdi, N., Hannula-Sormunen, M., Brezovszky, B., & Lehtinen, E. (2018). The development of situational interest during a digital mathematics game. Journal of Computer Assisted Learning, 34(3), 259–268. [40] Joiner, I. A. (2018). Chapter 1 - Artificial Intelligence: AI is nearby. In I. A. Joiner (Ed.), Emerging library technologies (pp. 1–22). Chandos Publishing. [41] Chen, C. P. (2018). Understanding mobile English-learning gaming adopters in the self-learning market: The uses and gratification expectancy model. Computers & Education, 126, 217–230. [42] Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. Penguin UK. [43] Peng, J. (2019). The roles of multimodal pedagogic effects and classroom environment in willingness to communicate in English. System, 82, 161–173. [44] Razaghi, M., Bagheri, M. S., & Yamini, M. (2019). The impact of cognitive scaffolding on Iranian EFL learners' speaking skill. International Journal of Instruction, 12(4), 95–112. [45] Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. [46] MarketsandMarkets. (2020). Conversational AI market size, share and global market forecast to 2026. [47] Fu, S., Gu, H., & Yang, B. (2020). The affordances of AI‐enabled automatic scoring applications on learners’ continuous learning intention: An empirical study in China. British Journal of Educational Technology, 51(5), 1674–1692. [48] Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 100001. [49] Elbanna, A. (2020). Sociotechnical approaches in the era of data science and AI: A research agenda. In Proceedings of the 6th International Workshop on Sociotechnical Perspective in IS Development (STPIS 2020) (pp. 4–6). IEEE. [50] Daungcharone, K., Panjaburee, P., & Thongkoo, K. (2020). Implementation of mobile game-transformed lecture-based approach to promoting C programming language learning. International Journal of Mobile Learning and Organisation, 14(2), 236–254. [51] Fryer, L., Coniam, D., Carpenter, R., & Lăpușneanu, D. (2020). Bots for language learning now: Current and future directions. [52] Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236), 1579–1586. [53] Educational Testing Service. (2020). The redesigned TOEIC Bridge tests: Relations to test-taker self-assessments (Policy Report No. KBWJ). ETS. [54] Lee, H. S., & Lee, J. (2021). Applying artificial intelligence in physical education and future perspectives. Sustainability, 13(1), 351. [55] Luo, H., Li, G., Feng, Q., Yang, Y., & Zuo, M. (2021). Virtual reality in K-12 and higher education: A systematic review of the literature from 2000 to 2019. Journal of Computer Assisted Learning, 37(3), 887–901. [56] Borenstein, J., & Howard, A. (2021). Emerging challenges in AI and the need for AI ethics education. AI Ethics, 1, 61–65. [57] Jeon, J. (2021). Chatbot-assisted dynamic assessment (CA-DA) for L2 vocabulary learning and diagnosis. Computer Assisted Language Learning. Advance online publication. [58] Cao, L. (2022). AI in finance: Challenges, techniques, and opportunities. ACM Computing Surveys, 55(3), 1–64. [59] Tan, Y., Xu, W., Li, S., & Chen, K. (2022). Augmented and virtual reality (AR/VR) for education and training in the AEC industry: A systematic review of research and applications. Buildings, 12(10), 1529. [60] Flanagan, R. M., & Symonds, J. E. (2022). Children’s self-talk in naturalistic classroom settings in middle childhood: A systematic literature review. Educational Research Review, Article 100432. [61] Chien, Y. C., Wu, T. T., Lai, C. H., & Huang, Y. M. (2022). Investigation of the influence of artificial intelligence markup language-based LINE ChatBot in contextual English learning. Frontiers in Psychology, 13, 785752. [62] Zhai, C., Wibowo, S., & Cowling, M. (2022). Work-in-progress—Embedding cross-cultural humorous and empathetic functions to facilitate language acquisition. [63] Sahoo, S., & Lo, C.-Y. (2022). Smart manufacturing powered by recent technological advancements: A review. Journal of Manufacturing Systems, 64, 236–250. [64] He, Q., Zheng, H., Ma, X., Wang, L., Kong, H., & Zhu, Z. (2022). Artificial intelligence application in a renewable energy-driven desalination system: A critical review. Energy and AI, 7, Article 100123. [65] Wang, X., Pang, H., Wallace, M. P., Wang, Q., & Chen, W. (2022). Learners’ perceived AI presences in AI-supported language learning: A study of AI as a humanized agent from community of inquiry. Computer Assisted Language Learning, 1–27. [66] Jeon, J. (2022). Exploring a self-directed interactive app for informal EFL learning: A self-determination theory perspective. Education and Information Technologies, 27, 5767–5787. [67] Permanasari, A. E., Nugroho, H. E., Ardhanarko, H. B. S., Fauziati, S., Utami, I. K., & Sholihin, M. (2022, November). Development of VR and AR learning media for enterprise business ethic scenarios. In 2022 International Conference on Information Technology Systems and Innovation (ICITSI) (pp. 225–230). IEEE. [68] Hou, H. T., Fang, Y. S., & Tang, J. T. (2023). Designing an alternate reality board game with augmented reality and multi-dimensional scaffolding for promoting spatial and logical ability. Interactive Learning Environments, 31(7), 4346–4366. [69] Educational Testing Service. (2023). Report on test takers worldwide: TOEIC® listening and reading tests. ETS. [70] Baek, C., Tate, T., & Warschauer, M. (2024). “ChatGPT seems too good to be true”: College students’ use and perceptions of generative AI. Computers and Education: Artificial Intelligence, 7, 100294. [71] Guan, L., Zhang, E. Y., & Gu, M. M. (2024). Examining generative AI–mediated informal digital learning of English practices with social cognitive theory: A mixed-methods study. ReCALL, 1–17. [72] Jeon, J. (2024). Exploring AI chatbot affordances in the EFL classroom: Young learners’ experiences and perspectives. Computer Assisted Language Learning, 37(1–2), 1–26. [73] Tsai, C. Y., Lin, Y. T., & Brown, I. K. (2024). Impacts of ChatGPT-assisted writing for EFL English majors: Feasibility and challenges. Education and Information Technologies, 1–19. [74] Alfares, F. (2025). Supporting learner autonomy and scaffolding in language learning contexts: Effects on self-regulation and performance. Journal of Language Learning and Technology, 12(3), 145–162. [75] Kohnke, L., Zou, D., & Su, F. (2025). Exploring the potential of GenAI for personalised English teaching. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信