系統識別號 | U0002-1207201120465500 |
---|---|
DOI | 10.6846/TKU.2011.00385 |
論文名稱(中文) | 輕型飛機航空座椅之適墜性分析 |
論文名稱(英文) | Crashworthiness Analysis of Light Aircraft Seat |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 航空太空工程學系碩士班 |
系所名稱(英文) | Department of Aerospace Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 99 |
學期 | 2 |
出版年 | 100 |
研究生(中文) | 黃毓仁 |
研究生(英文) | Yu-Jen Huang |
學號 | 698430534 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2011-06-10 |
論文頁數 | 86頁 |
口試委員 |
指導教授
-
陳步偉
委員 - 沈坤耀 委員 - 張永康 |
關鍵字(中) |
輕型航空座椅 適墜性 有限元素法 |
關鍵字(英) |
Light Aircraft Seat Crashworthiness Finite Element |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
隨著追求飛行速度與爭取時間之下,飛航安全仍然是人們所關注的問題。在飛機飛行當中,乘客約束系統來自於兩部份:1.安全帶;2.座椅。其中座椅結構強度為保護機上人員最主要系統。飛機墜毀時,為了提高機上人員存活率,座椅必須能承受一定的衝擊力。因此FAA制定了航空座椅相關規範,以確保機上人員安全。 本文主要目的為利用有限元素軟體建立輕型飛機航空座椅之適墜性模擬平台。由於輕型航空器對座椅沒有明確規範,因此按照FAR 23之安全規範進行靜、動態分析,並使用Pro/ENGINEER建立座椅3D模型,再利用ABAQUS有限元素軟體網格化、設定邊界及負載條件,進行分析運算,取得航空座椅構件之應立、應變分佈及變形量。 由靜態模擬結果,本研究3003-H16鋁合金航空座椅符合FAR 23.561所規定:向前9G、側向1.5G、向上3G及向下6G之規範測試。而動態模擬方面,經過FAR 23.562之兩種測試規定:1.俯仰角度30度以速度31fps向下墜落。2.偏轉角度10度以速度42fps向前撞擊,會產生破壞。在降伏應力下不發生破壞之可承受最大速度為向下7.3fps、向前6.7fps。 |
英文摘要 |
As for the pursuit of flight speed and efficient time, the flight safety remains a concern. During the flight, the passenger restraint system comes from two parts: 1. seat belts; 2. seat. Structural strength of the seats is the main system to protect all the passengers and the crew. In order to improve the survival rate of the crew and passengers when the plane crash, the seats must withstand a certain degree of impact. Therefore, FAA developed a standard of the flight seat to ensure the passengers’ safety. The main purpose of this paper is to discuss the use of the finite element software to create an aviation simulation platform for crashworthiness of the seats of light aircraft. As the seat of light aircraft is not clearly defined, static and dynamic analyses are in accordance with the safety regulations of FAR 23. 3D seating model was established by using the Pro / ENGINEER. Also, by using finite element software ABAQUS grid, setting the boundary and load conditions, and conducting the operations and analysis to obtain components of air seats to be set, strain distribution and the amount of deformation. According to the static simulation results, the 3003-H16 aluminum alloy air seats meet regulation of FAR 23.561 as below: forward 9G, lateral 1.5G, 3G up and down the norms 6G test. As for the dynamic simulation, after the two tests from FAR 23.562 which states: 1. Pitch angle of 30 degrees under speed 31fps down fall. 2. Deflection angle of 10 degrees under speed 42fps forward impacts will have damage. Under the yield stress, the maximum speed to withstand destruction is downward 7.3fps, forward 6.7fps. |
第三語言摘要 | |
論文目次 |
目錄 中文摘要…………………………………………………………………i Abstract………………………………………………………………ii 目錄……………………………………………………………………iii 圖目錄…………………………………………………………………v 表目錄…………………………………………………………………vii 第一章、緒論……………………………………………………………1 1.1 前言………………………………………………………………………1 1.2 航空座椅安全議題………………………………………………………1 1.3 研究動機與目的…………………………………………………………5 1.4 研究方法與流程…………………………………………………………6 第二章、文獻回顧………………………………………………………8 2.1適墜性……………………………………………………………………8 2.2座椅相關測試……………………………………………………………8 2.3有限元素軟體運用………………………………………………………12 2.4航空座椅法規……………………………………………………………13 2.4.1 FAA………………………………………………………………14 2.4.2諮詢通告(Advisory Circular, AC)………………………………17 2.4.3技術標準規定(Technical Standard Order, TSO)…………………24 2.4.4 AGATE……………………………………………………………25 2.4.5美國軍用法規(MIL)……………………………………………33 第三章、客艙安全設計測試與座椅設計………………………………36 3.1客艙安全設計……………………………………………………………36 3.2客艙安全測試……………………………………………………………38 3.3航空座椅設計……………………………………………………………39 第四章、座椅結構分析…………………………………………………45 4.1 有限元素法及ABAQUS………………………………………………45 4.2 分析流程………………………………………………………………48 4.3 模型建立及網格化……………………………………………………49 4.4 材料參數………………………………………………………………52 4.5 靜態模擬………………………………………………………………53 4.5.1 靜態模擬設定……………………………………………………53 4.5.2 靜態模擬結果……………………………………………………56 4.5.3 靜態模擬結果比較與討論………………………………………62 4.6 動態模擬………………………………………………………………62 4.6.1 動態模擬設定……………………………………………………63 4.6.2 動態模擬結果……………………………………………………64 4.6.3 靜態模擬結果比較與討論………………………………………69 第五章、結論…………………………………………………………74 參考文獻………………………………………………………………75 附錄 論文簡要版………………………………………………………79 圖目錄 圖1-1 哥倫比亞航空52航班空難空照圖…………………………………………4 圖1-2 哥倫比亞航空52航班空難地照圖…………………………………………4 圖1-3 佛羅里達航空90航班空難圖………………………………………………5 圖1-4 本研究總流程圖..……………………………………………………………7 圖2-1 型號CV-22傾斜翼飛機……………………………………………………11 圖2-2 Concurrent Corporation新型彈射座椅……………………………………12 圖2-3 AGATE衝擊條件…………………………………………………………27 圖2-4 動態測試(1):水平面上座雪橇測試與水平夾60度……………………29 圖2-5 動態測試(1):落塔試驗傾斜30度………………………………………29 圖2-6 動態測試(2):縱向雪橇測試………………………………………………30 圖3-1 AGATE座椅示意圖………………………………………………………39 圖3-2 Guided-Stroke Seat示意圖…………………………………………………41 圖3-3 可變形座椅結構示意圖……………………………………………………42 圖3-4 Pivoting Seat Pan示意圖…………………………………………………42 圖3-5 Crushing Seat Pan示意圖…………………………………………………43 圖3-6 NASA設計之農用輕型飛機座椅…………………………………………44 圖4-1 有限元素法分析程序………………………………………………………47 圖4-2 本研究分析流程圖………………………………………………………49 圖4-3 Kaman K-1200直升機座椅尺寸…………………………………………50 圖4-4 簡化後3D座椅圖…………………………………………………………50 圖4-5 實體元素座椅完成mesh圖………………………………………………51 圖4-6 殼元素座椅完成mesh圖…………………………………………………52 圖4-7 座椅固定端設定圖…………………………………………………………54 圖4-8 向前9G施力設定圖………………………………………………………54 圖4-9 側向1.5G施力設定圖……………………………………………………55 圖4-10 向上3G施力設定圖………………………………………………………55 圖4-11 向下6G施力設定圖………………………………………………………55 圖4-12 Report Field Output圖……………………………………………………56 圖4-13 靜態向前9G位移變形圖…………………………………………………57 圖4-14 靜態向前9G應力分布圖…………………………………………………57 圖4-15 靜態向前9G應變分布圖…………………………………………………57 圖4-16 靜態側向1.5G位移變形圖………………………………………………58 圖4-17 靜態側向1.5G應力分布圖………………………………………………58 圖4-18 靜態側向1.5G應變分布圖………………………………………………59 圖4-19 靜態向上3G位移變形圖…………………………………………………59 圖4-20 靜態向上3G應力圖..……………………………………………………..60 圖4-21 靜態向上3G應變分布圖…………………………………………………60 圖4-22 靜態向下6G位移變形圖…………………………………………………61 圖4-23 靜態向下6G應力分布圖…………………………………………………61 圖4-24 靜態向下6G應變分布圖…………………………………………………61 圖4-25 座椅向下墜落環境圖……………………………………………………64 圖4-26 座椅向前撞擊環境圖……………………………………………………64 圖4-27 向下墜落地板最大應力圖 ………………………………………………65 圖4-28 向下墜落地板最大應變圖………………………………………………65 圖4-29 向下墜落地板總能量圖 …………………………………………………66 圖4-30 向下墜落地板沙漏能圖 …………………………………………………66 圖4-31 向下墜落地板最大加速度圖…………………………………………66 圖4-32 向前撞擊平板最大應力圖… ……………………………………………67 圖4-33 向前撞擊平板最大應變圖… …………………………………………68 圖4-34 向前撞擊平板總能量圖………… ………………………………………68 圖4-35 向前撞擊平板沙漏能圖 …………………………………………………68 圖4-36 向前撞擊平板最大加速度圖……………………………………………69 圖4-37 向下7.3fps最大應力圖…………………………………………………71 圖4-38 向下7.3fps最大應變圖…………………………………………………71 圖4-39 向下6.7fps最大應力圖………………………………………………71 圖4-40 向下6.7fps最大應變圖…………………………………………………72 表目錄 表2-1 FAR 23四種類型飛機定義差別…………………………………………14 表2-2 FAR 23, 25, 27, 29所需靜態測試G力…………………………………15 表2-3 FAR 23, 25, 27, 29所需動態測試G力……………………………………16 表2-4 普通、通用或雜技類飛機座椅/約束系統動態測試………………………22 表2-5 運輸類飛機座椅/約束系統動態測試……………………………………23 表2-6 AGATE衝擊條件…………………………………………………………26 表2-7 飛機受衝擊之相關規範……………………………………………………28 表2-8 飛行員體重調查表…………………………………………………………30 表2-9 FAA動態測試要求…………………………………………………………32 表2-10 軍用座椅靜態測試環境……………………………………………………34 表2-11 軍用座椅動態測試環境……………………………………………………35 表4-1 3003- H16材料主要特性………………………………………………52 表4-2 鋁合金3003- H16座椅之靜態模擬……...………......................................63 表4-3 鋁合金3003- H16座椅之動態模擬(一)…………………………………72 表4-3 鋁合金3003- H16座椅之動態模擬(二)…………………………………73 |
參考文獻 |
[1] http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?sid=3e128154d2c572a0b4895544ae53d584&c=ecfr&tpl=/ecfrbrowse/Title14/14cfrv1_02.tpl [2] 張浩,賴春霖口述,黃肇義,林南雄,航太工業通訊,第十五期,民國84年6月。 [3] FAR Part 25.561, General, July 29, 1997. [4] FAR Part 25.562, Emergency landing dynamic conditions, May 17, 1988. [5] TSO-C127, “Rotorcraft and Transport Airplane Seating Systems”, Aircraft Certification Service, FAA, March 30, 1992. [6] http://www.ntsb.gov/ntsb/brief.asp?ev_id=20001212X22401&key=1 [7] http://photovalet.com/TAWV01P04_15.html [8] http://www.ntsb.gov/aviation/aviation.htm [9] http://weblogs.sun-sentinel.com/news/weather/hurricane/blog/2009/01/air_florida_disaster_27_years.html [10] http://www.pilotfriend.com/disasters/crash/airflorida90.htm [11] http://www.nasa.gov/centers/langley/home/index.html [12] http://www.airsafe.com/events/airlines/midland.htm [13] 劉建浩、黃俊能、莊育泰,“客艙安全適航法規之探討”,開南大學空運管理學系,民國95年。 [14] TSO-C39c, “9G Transport Airplanes Seats Certified by Static Testing”, Aircraft Certification Service, FAA, Feb 13, 2004. [15] TSO-C127a, “Rotorcraft, Transport Airplane, and Normal and Utility Airplane Seating Systems”, Aircraft Certification Service, FAA, Mar 1992. [16] Society of Automotive Engineers Aerospace Standard,” Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft” SAE AS 8049b, Jan 2005. [17] Bruce Byers, “Crashworthiness”, Flight Safety Australia, pp. 33, November 1998. [18] 吳玟真,“輕型運動載具市場趨勢與適墜性分析”,淡江大學航空太空工程學系碩士論文,民國98年。 [19] 謝育楊,“輕型載具適墜性結構模擬分析”,淡江大學航空太空工程學系碩士論文,民國99年。 [20] 郭進和,“賽車座椅背後撞擊測試與分析”,台灣大學機械工程學研究所碩士論文,民國92年。 [21] FAA AR04/34, “Modeling of a Commuter Category Aircraft Seat”, 2004. [22] 周德育、林修銘、蔡旭程,車用座椅安全性衝擊研究,ABAQUS用戶大會文獻,台灣區,民國96年。 [23] 林似諭,“酚醛樹酯複合材料於航空座椅構件之設計與分析研究”,建國科技大學自動化工程系暨機電光系統研究所碩士論文,民國97年。 [24] Heidi R. Moore and Rachael Testerman, “Effects of Structural and Occupant Provision Improvements to the Static and Dynamic Response of the V-22 Osprey Energy Attenuating Troop Seating System,” American Helicopter Society 61st Annual Forum, Grapevine, TX, June 1-3, 2005. [25] Concurrent Technologies Corporation, “Aircraft Applications,” 2007. [26] Greg Heartsfield, Texas, 2006. [27] Ma, D., Lankarani, H.M., Multibody, Finite Element Analysis Approach for Modeling of Crash Dynamic Responses, ASME Journal of Mechanical Design, Vol. 119, pp. 382-387, September, 1997. [28] Motevalli, Vahid and Noureddine, Ahmad, Application of Finite Element Dynamic Simulation to Airplane Cabin in Air Turbulence, International Aircraft Fire and Cabin Safety Research Conference, Nov. pp. 16-20, 1998. [29] Tan, T. M., Byar, J. Awerbuch, and Lau, A Finite Element Simulations of a Vertical Drop Test of a Boeing 737 Fuselage Section, Proceedings of the Third Triennial International Fire & Cabin Safety Research Conference, October 22, 2001. [30] Johnson, A. F., Lutzenburger, M.), Improve Occupant Crash Safety in Helicopters, German Aerospace Center, 2003. [31] Randhwa, H. S. and Lankarani, H.M., Finite Element Analysis of Impacts on Water and Its Application to Helicopter Water Landing and Occupant Safety, International Journal of Crashworthiness, Vol. 8, No. 2, pp.189-200, 2003. [32] 張維方,「民用飛機艙內裝是與設備的適墬性研究」,上海飛機設計研究所結構設計研究室,民國98年。 [33] FAR 23-Airworthiness Standards: Normal, Utility, Acrobatic, and Commuter Category Airplanes, FAA, Dec, 2008. [34] FAR 25-Airworthiness Standards: Transport Category Airplanes, FAA, Dec, 2008. [35] FAR 27-Airworthiness Standards: Normal Category Rotorcraft, FAA. [36] FAR 29 -Airworthiness Standards: Transport Category Rotorcraft, FAA. [37] Federal Aviation Administration, “Index of Aviation Technical Standard Orders”, Advisory Circular AC 20-110L, Oct 10 2000. [38] Federal Aviation Administration, “Approval of Modified Seating System Initially Approved Under A Technical Standard Order”, Advisory Circular AC 21-25A, Jun 3 1997. [39] Federal Aviation Administration, “Shoulder Harness –Safety Belt Installations” Advisory Circular AC 21-34, Jun 4 1993. [40] Federal Aviation Administration, “Dynamic Testing of Part 23 Airplane Seat/Restraint Systems and Occupant Protection”, Advisory Circular AC23.562-1, Jun 22 1989. [41] Federal Aviation Administration, “Dynamic Evaluation of Seat Restraint System and Occupant Protection on Transport Airplanes” Advisory Circular AC 25.562-1B, Jan 10 2006. [42] 陳景祥,航太工業通訊,民國89年9月。 [43] FAR 21 - Certification Procedures for Products and Parts, FAA. [44] TSO-C39c, “9G Transport Airplanes Seats Certified by Static Testing”, Aircraft Certification Service, FAA, Feb 13 2004. [45] TSO-C127a, “Rotorcraft, Transport Airplane, and Normal and Utility Airplane Seating Systems”, Aircraft Certification Service, FAA, Aug 21, 1998. [46] Todd R. Hurley, Darrel Noland, “Small Airplane Crashworthiness Design Guide” AGATE, Chapter 3, 2002. [47] Grace, G. B., Hurley, T. R., and Labun, L., “General Aviation Crash Safety Analysis and Crash Test Conditions: A Study of Accident Data from 1988 to 1995,” TR-98002, Simula Technologies, Inc., Phoenix, Arizona, February 15, 1998. [48] Turnbow, J. W., Carroll, D. F., et al., Crash Survival Design Guide, Aviation Safety Engineering and Research, July 1967 (Revised January 1969). [49] Clark, J. C., “Summary Report on the National Transportation Safety Board’s General Aviation Crashworthiness Project Finding,” SAE 871006, Society of Automotive Engineers, Warrendale, Pennsylvania, April 1987. [50] Todd R. Hurley, Darrel Noland, “Small Airplane Crashworthiness Design Guide” AGATE, Chapter 7, 2002. [51] Simula, Inc., Aircraft Crash Survival Design Guide, Volume I – Design Criteria and Checklists, USARTL-TR-79-22B, Simula, Inc., Tempe, Arizona, January 1980. [52] MIL-S-85510, “General Specification for Helicopter Cabin Crashworthy Seats,” November 1981. [53] MIL-S-58095A, “General Specification for Seat System: Crash-Resistant, Non-Ejection, Aircrew,” January 1986. [54] FAR Part 25.813, Emergency exit access, 2009. [55] FAR Part 25.853, Compartment interiors, 2004. [56] FAR Part 25.803, Emergency evacuation, 1990. [57] FAR Part 25.1415, Ditching equipment, 1994. [58] S. Kellas, Energy absorbing seat system for an agricultural aircraft [ R ]. NASA /CR-2002-212132.Washington: NASA, 2002. [59] 吳宏振,「T 形管件液壓成形之自適性模擬」,國立中山大學機械與機電工程學系碩士論文,民國92年6月。 [60] 鄭洵,”橡膠包覆對水下結構抗震效果之探討”,大葉大學機械工程研究所碩士班碩士論文,2007年6月。 [61] 愛發股份有限公司,”Abaqus實務入門引導”,全華圖書股份有限公司,2007年11月。 [62] Energy-Absorbing Pilot Seat for Kaman K-1200 [63] 石亦平、周玉蓉,“ABAQUS有限元素實例詳解”,北京:機械工業出版社,2006。 [64] MATWEB, http://www.matweb.com/ |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信