| 系統識別號 | U0002-1108202500511300 |
|---|---|
| DOI | 10.6846/tku202500690 |
| 論文名稱(中文) | 導入擴增實境科普繪本於國小高年級學生認知負荷與科學知識學習成效之研究 |
| 論文名稱(英文) | A Study on Cognitive Load and Science Learning Performance in Upper Elementary School Students Using Augmented Reality Picture Books |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 教育科技學系碩士班 |
| 系所名稱(英文) | Department of Educational Technology |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 李小鯨 |
| 研究生(英文) | Hsiao-Ching Lee |
| 學號 | 612730092 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-06-09 |
| 論文頁數 | 111頁 |
| 口試委員 |
指導教授
-
張瓊穗(cschang@mail.tku.edu.tw)
口試委員 - 徐新逸(hyshyu@mail.tku.edu.tw) 口試委員 - 崔夢萍(mptsuei@mail.ntue.edu.tw) |
| 關鍵字(中) |
擴增實境 科普繪本 認知負荷 學習成效 國小自然科教學 |
| 關鍵字(英) |
Augmented Reality Popular Science Picture Book Cognitive Load Learning Performance Elementary School Science Education |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
擴增實境(Augmented Reality, AR)技術在教育領域的應用逐漸受到重視,其高度互動性與多感官呈現方式被認為有助於降低學習者在抽象概念理解上的難度,並促進學習動機與學習成效。然而,AR教材在實際教學中對認知負荷的影響仍有探討空間,且不同構面的認知負荷與學習成效之間的關係尚未獲得一致結論。本研究以國小高年級學生為對象,探討AR科普繪本在自然科教學中的應用成效,並檢視學生在閱讀AR科普繪本後的認知負荷,以及科學知識學習成效與認知負荷之間的相關性。 本研究採單組前後測設計,以新北市兩所國民小學共 32 位五、六年級學生為研究樣本。教學教材為改編自《繡球花的火星夢》之AR科普繪本,內容涵蓋火星的水痕跡、土壤環境、地形特徵,以及推論人類移居可能性的依據等。研究工具包括火星知識前後測驗、閱讀理解學習單及認知負荷問卷(包含「心智努力」與「心理負荷」兩構面)。數據分析採用配對樣本t檢定、效果量(Cohen’s d)計算,以及斯皮爾曼等級相關分析,以檢驗學習成效變化與認知負荷之間的關聯性。 研究結果顯示,學生在接受AR科普繪本教學後,火星知識測驗與閱讀理解表現均有顯著提升,且部分題型的進步幅度較大,反映出AR教材在協助學生理解抽象與行星科學概念方面的潛力。在認知負荷方面,學生對「心智的努力」與「心理的負荷」的自評分數整體偏低至中等,顯示AR教材在提升互動性與參與度的同時,並未造成過高的學習壓力。相關性分析結果顯示,「心智努力」與知識學習增益呈低度正相關(未達顯著);「心理負荷」與閱讀理解錯題數亦呈低度正相關,顯示心理負荷可能在部分情況下對理解表現產生一定影響。整體而言,認知負荷與學習成效之間並未呈現穩定且顯著的線性關係,顯示其作用機制可能受到多重因素影響,例如先備知識、學習策略或科技使用熟悉度,與既有認知負荷理論所指出的多元交互作用模式相呼應。 本研究結果支持AR科普繪本作為自然科教學媒介的可行性,特別是在提升抽象概念理解與學習動機方面的應用價值。然而,鑒於樣本數與研究設計的限制,後續研究可擴大樣本範圍,涵蓋不同地區、年齡層與科技經驗的學生,並採準實驗或隨機對照試驗設計,同時納入更多控制變項與質性資料,以更全面檢驗 AR 教材在不同學習情境下對認知負荷與學習成效的影響。 |
| 英文摘要 |
The application of Augmented Reality (AR) technology in education has attracted increasing attention. Its high interactivity and multisensory presentation are considered to help reduce the difficulty of understanding abstract concepts and enhance learners’ motivation and learning outcomes. However, the impact of AR materials on cognitive load in real classroom contexts remains open to discussion, and the relationship between different dimensions of cognitive load and learning outcomes has yet to reach a consistent conclusion. This study focused on upper-grade elementary school students to explore the effectiveness of AR science picture books in science education, and to examine students’ cognitive load after reading an AR science picture book as well as the correlation between cognitive load and science knowledge learning outcomes. A one-group pretest–posttest design was adopted, with 32 fifth- and sixth-grade students from two elementary schools in New Taipei City serving as participants. The instructional material was an AR science picture book adapted from Hydrangea’s Mars Dream, covering topics such as evidence of water on Mars, soil conditions, topographical features, and reasoning about the possibility of human migration to Mars. Research instruments included a Mars knowledge pretest and posttest, a reading comprehension worksheet, and a cognitive load questionnaire measuring two dimensions—“mental effort” and “mental load.” Data were analyzed using paired-sample t-tests, effect size (Cohen’s d), and Spearman’s rank correlation analysis to examine the relationship between changes in learning outcomes and cognitive load. Results showed significant improvement in both Mars knowledge and reading comprehension performance after the AR-based instruction, with some question types demonstrating particularly large gains. This suggests the potential of AR materials in supporting students’ understanding of abstract and planetary science concepts. Regarding cognitive load, students’ self-rated scores for both “mental effort” and “mental load” were generally low to moderate, indicating that the AR materials enhanced interactivity and engagement without causing excessive learning pressure. Correlation analysis revealed a low positive (but non-significant) association between mental effort and knowledge gain, as well as between mental load and the number of reading comprehension errors, suggesting that mental load may, in some cases, influence comprehension performance. Overall, cognitive load and learning outcomes did not exhibit a stable and significant linear relationship, indicating that their interaction may be influenced by multiple factors—such as prior knowledge, learning strategies, or familiarity with technology—aligning with cognitive load theory’s emphasis on multifactorial interactions. This study provides preliminary evidence supporting the feasibility of using AR science picture books in science education, particularly for enhancing understanding of abstract concepts and promoting learning motivation. However, given the limitations of sample size and research design, future studies should expand the participant pool to include students from diverse regions, age groups, and technology experience levels, adopt quasi-experimental or randomized controlled trial designs, and incorporate additional control variables and qualitative data to more comprehensively examine the impact of AR materials on cognitive load and learning outcomes in varied educational contexts. |
| 第三語言摘要 | |
| 論文目次 |
目錄 i 圖目錄 i 表目錄 i 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究問題 4 第四節 名詞釋義 4 第五節 研究限制 6 第二章 文獻探討 8 第一節 擴增實境 8 第二節 擴增實境繪本與科學學習 11 第三節 認知負荷 13 第四節 科學知識學習成效 17 第三章 研究方法 19 第一節 研究設計 19 第二節 研究流程 20 第三節 研究對象 21 第四節 教學流程 22 第五節 研究工具 24 第六節 資料處理 41 第四章 研究結果與分析 42 第一節 學習成效 42 第二節 認知負荷 51 第三節 學習成效與認知負荷之相關性 55 第五章 研究結論與建議 59 第一節 研究結論 59 第二節 研究建議 62 第六章 參考文獻 65 第一節 中文文獻 65 第二節 英文文獻 68 附錄 84 附錄一 《繡球花火星夢》教學活動教案 84 附錄二 《繡球花火星夢》課堂實施照片 88 附錄三 AR科普繪本《繡球花火星夢》完整內容 89 附錄四 AR設計內容 96 附錄五 學生基本資料調查問卷 99 附錄六 繪本內容優化測試之完整教案 100 附錄七 繪本優化課堂實施照片 103 附錄八 火星知識前後測驗題目 104 附錄九 《繡球花火星夢》閱讀理解學習單 106 附錄十 認知負荷問卷完整內容 108 附錄十一 研究參與者知情同意書 111 圖1 研究架構圖 20 圖2 研究流程圖 21 圖3 教學流程圖 23 圖4 測試流程圖 31 圖5 知識前後測正確率比較圖 49 圖6 前後測盒鬚圖 50 表1 專家基本資料 24 表2 文本優化內容彙整表 25 表3 AR優化內容彙整表 27 表4 學生基本資料統計表 29 表5 工作任務清單表 33 表6 任務完成時間總表 34 表7 任務平均完成時間 35 表8 訪談大綱 36 表9 學生訪談回應分析摘要表 37 表10 兩所國小前測成績之描述性統計表 42 表11 兩所國小前測成績之獨立樣本t檢定 43 表12 閱讀理解學習單統計表 44 表13 火星知識前測統計表 46 表14 火星知識後測統計表 48 表15 前後測統計分析結果表 51 表16 心智的努力統計表 53 表17 心理的負荷統計表 55 表18 Shapiro-Wilk 常態性檢定結果 57 表19 認知負荷與學習成效之斯皮爾曼相關分析 58 |
| 參考文獻 |
白玉玲 (2021)。108 課綱彈性課程主題化的實踐與反思。臺灣教育評論月刊,10(8),47-52。http://www.ater.org.tw/journal/article/10-8/topic/08.pdf 何紫瑄 (2020)。基於 3D 模型及擴增實境之機器人輔助手術監控設計。交通大學電機與控制工程系所學位論文,1-60。https://www.airitilibrary.com/Article/Detail/U0030-1504202111245279 吳芳霓、蔡子瀅、黃鈺珊、林彥廷(2023)。發展應用AR互動式悅趣化健康飲食學習系統於國小營養教育之成效研究。載於社團法人台灣工程教育與管理學會(主編),2023第19屆科技教育研究與發展學術研討會2023第12屆工程、技術與STEM教育研討會論文集(頁784-797)。社團法人台灣工程教育與管理學會。https://doi.org/10.29619/STEM.202311.0050 吳芳霓、蔡子瀅、黃鈺珊、林彥廷(2023)。發展應用AR互動式悅趣化健康飲食學習系統於國小營養教育之成效研究。載於社團法人台灣工程教育與管理學會(主編),2023第19屆科技教育研究與發展學術研討會2023第12屆工程、技術與STEM教育研討會論文集(頁784-797)。社團法人台灣工程教育與管理學會。https://doi.org/10.29619/STEM.202311.0050 吳瓊慧 (2020)。因應新課綱之國小教材選編與使用。臺灣教育評論月刊,9(3),72-75。http://www.ater.org.tw/journal/article/9-3/topic/13.pdf 吳麗君 (2020)。用教科書而不被教科書所用。臺灣教育評論月刊,9(3),1-5。http://www.ater.org.tw/journal/article/9-3/topic/01.pdf 李佳娟、賴阿福(2019)。應用擴增實境於象形文字繪本教學對國小學童之閱讀成效研究。載於國立金門大學(主編),NCS 2019 全國計算機會議(頁662-666)。國立金門大學。https://doi.org/10.6927/NCS.201911.0129 林美瑩(2016)。在綠繪本中遇見環境教育。師友月刊,(590),69-72。https://doi.org/10.6437/EM.201608_(590).0014 徐瑞縈、許竹筌(2018)。遊戲動機與網路社群資訊分享對精靈寶可夢GO玩家遊戲體驗滿意度探索-皮卡丘效應的驗證。亞太經濟管理評論,21(2),75-104。https://www.airitilibrary.com/Article/Detail?DocID=16828062-201803-201901240020-201901240020-75-104 張靜儀、劉蕙鈺 (2003)。自然科教學引起動機的策略與方法研究。科學教育月刊,61,2–12。https://doi.org/10.6216/SEM.200308_(261).0001 許一珍(2019)。應用擴增實境於國小自然與生活科技教材之學習成效與動機研究。中科大學報,6(1),105-115。https://doi.org/10.6902/JNTUST.201912_6(1).0007 許云曦(2024)。擴增實境融入國小天文科普繪本之研發-以火星主題為例〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/tku202400115 郭淳文、張世彗(2018)。繪本結合擴增實境教學對國小智能障礙學生口語表達成效之研究。特教論壇,(25),1-24。https://doi.org/10.6502/SEF.201812_(25).0001 陳新豐(2016)。國小高年級學童線上數位閱讀認知負荷量表編製。教育研究與發展期刊,12(4),1-22。https://doi.org/10.3966/181665042016121204001 游自達 (2019)。素養導向教學的實踐:深化學習的開展。臺灣教育評論月刊,8(10),6-12。https://ecamp.tp.edu.tw/junior/uploadfiles/annex/20221116071248_3.pdf 游勝翔(2021)。學習成效指標的翻轉:以自學力作為評估焦點。跨域自學力學報,79-86。https://www.airitilibrary.com/Article/Detail?DocID=P20221018002-202110-202210260015-202210260015-79-86 童敏毓(2018)。利用多元文本科學閱讀提昇國小六年級學童科學素養之行動研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2018.00437 黃琇屏(2021)。國小自然領域教師對核心素養看法、教學困境與需求協助之研究。台灣教育研究期刊,2(5),195-217。https://www.airitilibrary.com/Article/Detail?DocID=P20220316001-202109-202207280012-202207280012-195-217 楊秀停、王國華 (2007)。實施引導式探究教學對於國小學童學習成效之影響。科學教育學刊,15(4),439–459。https://doi.org/10.6173/CJSE.2007.1504.05 劉國兆 (2024)。大補習時代!為什麼教育越改革,升學補習班越多?。點教育,6(2),65-67。https://www.airitilibrary.com/Article/Detail?DocID=P20200409001-N202501110011-00024 蔡浩軒、孟瑛如 (2010)。擴增實境(AR)之比與比值數學教材對 國小六年級學習障礙學生學習及 課堂注意力成效提升之探討。特殊教育學報,(51),62-100。https://www.journals.com.tw/jsped/upload/journal/prog/51(3).pdf 衛惠瑜(2014)。以使用者測試觀點探討國中電子教科書使用性評估之研究—以數學科為例〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2014.00667 鄭琨鴻(2020)。探索擴增實境科學小說閱讀對大專院校學生的科學知識觀之影響及認知負荷感受。數位學習科技期刊,12(3),59-87。https://doi.org/10.3966/2071260X2020071203003 謝甫佩、洪振方 (2004)。國小學生科學探究活動的課程設計及實施成果之個案研究. 師大學報:科學教育類,49(2),61-86。https://jntnu.ord.ntnu.edu.tw/Uploads/Papers/634593646953832000.pdf Albers, F., Trypke, M., Stebner, F., Wirth, J., & Plass, J. L. (2023). Different types of redundancy and their effect on learning and cognitive load. British Journal of Educational Psychology, 93(S2), 339–352. https://doi.org/10.1111/bjep.12592 Alkhabra, Y. A., Ibrahem, U. M., & Alkhabra, S. A. (2023). Augmented reality technology in enhancing learning retention and critical thinking according to STEAM program. Humanities and Social Sciences Communications, 10(1), 1–10. https://doi.org/10.1057/s41599-023-01650-w Arena, F., Collotta, M., Pau, G., & Termine, F. (2022). An overview of augmented reality. Computers, 11(2), 28. Avila-Garzon, C., Bacca-Acosta, J., Duarte, J., & Betancourt, J. (2021). Augmented Reality in Education: An Overview of Twenty-Five Years of Research. Contemporary Educational Technology, 13(3). Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355–385. Baddeley, A. (2020). Working memory. In Memory (3rd ed.). Routledge. Balıkcı, O. S., & Melekoglu, M. A. (2020). Early signs of specific learning disabilities in early childhood. International Journal of Early Childhood Special Education, 12(1), Article 1. https://doi.org/10.20489/intjecse.722383 Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1–4). Springer. Bevan, N., Carter, J., & Harker, S. (2015). ISO 9241-11 revised: What have we learnt about usability since 1998? 143–151. Bjorklund, D. F. (2022). Children′s Thinking: Cognitive Development and Individual Differences. SAGE Publications. Boone Jr, H. N., & Boone, D. A. (2012). Analyzing likert data. The Journal of Extension, 50(2), 48. Brito, P. Q., & and Stoyanova, J. (2018). Marker versus Markerless Augmented Reality. Which Has More Impact on Users? International Journal of Human–Computer Interaction, 34(9), 819–833. https://doi.org/10.1080/10447318.2017.1393974 Brunken, R., Plass ,Jan L., & and Leutner, D. (2003). Direct Measurement of Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 53–61. https://doi.org/10.1207/S15326985EP3801_7 Buchner, J., Buntins, K., & Kerres, M. (2021). A systematic map of research characteristics in studies on augmented reality and cognitive load. Computers and Education Open, 2, 100036. Castro-Alonso, J. C., de Koning, B. B., Fiorella, L., & Paas, F. (2021). Five Strategies for Optimizing Instructional Materials: Instructor- and Learner-Managed Cognitive Load. Educational Psychology Review, 33(4), 1379–1407. https://doi.org/10.1007/s10648-021-09606-9 Çeken, B., & Taşkın, N. (2022). Multimedia learning principles in different learning environments: A systematic review. Smart Learning Environments, 9(1), 19. https://doi.org/10.1186/s40561-022-00200-2 Chandler, P., & Sweller, J. (1992, June). THE SPLIT‐ATTENTION EFFECT AS A FACTOR IN THE DESIGN OF INSTRUCTION - CHANDLER - 1992—British Journal of Educational Psychology—Wiley Online Library. https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8279.1992.tb01017.x Chen, O., Kalyuga, S., & Sweller, J. (2017). The Expertise Reversal Effect is a Variant of the More General Element Interactivity Effect. Educational Psychology Review, 29(2), 393–405. https://doi.org/10.1007/s10648-016-9359-1 Chen, S.-Y. (2022). To explore the impact of augmented reality digital picture books in environmental education courses on environmental attitudes and environmental behaviors of children from different cultures. Frontiers in Psychology, 13, 1063659. Chitima, S. S. (2022). Developing effective study sheets as a vehicle for learning in museums. The Dyke, 16(1), 1–19. https://doi.org/10.10520/ejc-dyke_v16_n1_a3 Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155 Cohen, J. (2009). Statistical power analysis for the behavioral sciences (2. ed., reprint). Psychology Press. Daniel, J. N. (2023). Reducing Extraneous Cognitive Load: Learners Describe Learning Strategy Changes When Solving Problems [Ph.D.]. https://www.proquest.com/docview/2903798876/abstract/C4AB60933607491EPQ/1 Dannels, S. A. (2018). Research design. In The reviewer’s guide to quantitative methods in the social sciences (pp. 402–416). Routledge. DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223–234. https://doi.org/10.1037/0022-0663.100.1.223 DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223–234. https://doi.org/10.1037/0022-0663.100.1.223 Delgado-Rodríguez, S., Domínguez, S. C., & Garcia-Fandino, R. (2023). Design, Development and Validation of an Educational Methodology Using Immersive Augmented Reality for STEAM Education. Journal of New Approaches in Educational Research, 12(1), 19–39. https://doi.org/10.7821/naer.2023.1.1250 Duke, N. K., & Cartwright, K. B. (2021). The science of reading progresses: Communicating advances beyond the simple view of reading. Reading Research Quarterly, 56, S25–S44. Elford, D., Lancaster, S. J., & Jones, G. A. (2022). Exploring the effect of augmented reality on cognitive load, attitude, spatial ability, and stereochemical perception. Journal of Science Education and Technology, 31(3), 322–339. Ewais, A., & Troyer, O. D. (2019). A Usability and Acceptance Evaluation of the Use of Augmented Reality for Learning Atoms and Molecules Reaction by Primary School Female Students in Palestine. Journal of Educational Computing Research, 57(7), 1643–1670. https://doi.org/10.1177/0735633119855609 Ezrailson, C. M. (2013). Danger in the School Science Lab: Are students at risk? 92. Farley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., Hand, K., Goreva, Y., Herd, C. D., & Hueso, R. (2020). Mars 2020 mission overview. Space Science Reviews, 216, 1–41. Fathurohman, M., Al Ghozali, M. I., & Purwati, R. (2022). The Effectiveness of Experimental Methods on Student Learning Outcomes in Science Subject in Elementary School. ICOBBA_2021, 388–390. Faudzi, M. A., Cob, Z. C., Ghazali, M., Omar, R., & Sharudin, S. A. (2024). User interface design in mobile learning applications: Developing and evaluating a questionnaire for measuring learners’ extraneous cognitive load. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e37494 Fidai, A., Jarvis, C., Benzor, M., Verma, S., Capraro, M. M., & Capraro, R. M. (2019). Motivating future engineers: Building situation sensing Mars rover with elementary school students. 1–7. Firmansyah, F., & Aslan, A. (2025). THE RELEVANCE OF STEAM EDUCATION IN PREPARING 21ST CENTURY STUDENTS. International Journal of Teaching and Learning, 3(3), 9-16. https://injoqast.net/index.php/INJOTEL/article/view/50 Freund, E., & Rossmann, J. (1999). Projective virtual reality: Bridging the gap between virtual reality and robotics. IEEE Transactions on Robotics and Automation, 15(3), 411–422. Gallardo, A., Choy, C., Juneja, J., Bozkir, E., Cobb, C., Bauer, L., & Cranor, L. (2023). Speculative Privacy Concerns about AR Glasses Data Collection. Proceedings on Privacy Enhancing Technologies. https://petsymposium.org/popets/2023/popets-2023-0117.php Gonnermann‐Müller, J., & Krüger, J. M. (2025). Unlocking augmented reality learning design based on evidence from empirical cognitive load studies—A systematic literature review. Journal of Computer Assisted Learning, 41(1), e13095. Greenberg, K., & and Zheng, R. (2023). Revisiting the debate on germane cognitive load versus germane resources. Journal of Cognitive Psychology, 35(3), 295–314. https://doi.org/10.1080/20445911.2022.2159416 Gyawali, D. (2023). Mixed reality: The interface of the future. arXiv Preprint arXiv:2309.00819. Halim, A. Z. A. (2018). Applications of augmented reality for inspection and maintenance process in automotive industry. Journal of Fundamental and Applied Sciences, 10(3S), Article 3S. Holl, A., Chen, J., & Guan, G. (2023). Proceedings of the 2022 5th International Conference on Humanities Education and Social Sciences (ICHESS 2022). Springer Nature. Hsieh, F.-P., Chen ,Yun-An, Wu ,Hui-Ju, & and Tsai, C.-Y. (2023). Promoting first graders’ scientific thinking through picture books with the 5E model. The Journal of Educational Research, 116(3), 147–158. https://doi.org/10.1080/00220671.2023.2219635 Huang, S.-Y., Kuo, Y.-H., & Chen, H.-C. (2020). Applying digital escape rooms infused with science teaching in elementary school: Learning performance, learning motivation, and problem-solving ability. Thinking Skills and Creativity, 37, 100681.https://doi.org/10.1016/j.tsc.2020.100681 Hwang, G.-J., & Chang, H.-F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023–1031. https://doi.org/10.1016/j.compedu.2010.12.002 Iqbal, M. Z., Mangina, E., & Campbell, A. G. (2022). Current Challenges and Future Research Directions in Augmented Reality for Education. Multimodal Technologies and Interaction, 6(9), Article 9. https://doi.org/10.3390/mti6090075 Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 11–34. Joseph, A. W., & Murugesh, R. (2020). Potential eye tracking metrics and indicators to measure cognitive load in human-computer interaction research. J. Sci. Res, 64(1), 168-175. https://bhu.ac.in/research_pub/jsr/Volumes/JSR_64_01_2020/37.pdf Kalkan, I. (2019). The impact of nutrition literacy on the food habits among young adults in Turkey. Nutrition Research and Practice, 13(4), 352–357. https://doi.org/10.4162/nrp.2019.13.4.352 Kant, I. (2024). Metaphysical foundations of natural science (Vol. 11). Minerva Heritage Press. Kaźmierczak, R., Grunwald, G., Skowroński, R., Kaźmierczak, L., & Kowalczyk, C. (2025). Augmented reality tools for mathematics and geoscience education. Scientific Reports, 15(1), 17129. https://doi.org/10.1038/s41598-025-02090-z Kelp, N. C., McCartney, M., Sarvary, M. A., Shaffer, J. F., & Wolyniak, M. J. (2023). Developing science literacy in students and society: Theory, research, and practice. Journal of Microbiology & Biology Education, 24(2), e00058-23. Kim, U., Wang, Y., & Yuan, W. (2020). Study on user-centered usability elements of user interface designs in an augmented reality environment. 97–106. Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science, 48(1), 45–77. https://doi.org/10.1007/s11251-020-09502-9 Klepsch, M., & Seufert, T. (2021). Making an Effort Versus Experiencing Load. Frontiers in Education, 6. https://doi.org/10.3389/feduc.2021.645284 Korakakis, G., Pavlatou, E. A., Palyvos, J. A., & Spyrellis, N. (2009). 3D visualization types in multimedia applications for science learning: A case study for 8th grade students in Greece. Computers & Education, 52(2), 390–401. https://doi.org/10.1016/j.compedu.2008.09.011 Küçük, S., Yýlmaz, R. M., & Göktaþ, Y. (2014). Augmented reality for learning English: Achievement, attitude and cognitive load levels of students. Education & Science/Egitim ve Bilim, 39(176). Kuhn, D., & Pease, M. (2009). Do Children and Adults Learn Differently?: Journal of Cognition and Development: Vol 7, No 3. https://www.tandfonline.com/doi/abs/10.1207/s15327647jcd0703_1 Lai, A.-F., Chen, C.-H., & Lee, G.-Y. (2019). An augmented reality-based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. British Journal of Educational Technology, 50(1), 232–247. https://doi.org/10.1111/bjet.12716 Lai, J. W., & Cheong, K. H. (2022). Educational Opportunities and Challenges in Augmented Reality: Featuring Implementations in Physics Education. IEEE Access, 10, 43143–43158. https://doi.org/10.1109/ACCESS.2022.3166478 Leavy, A., Dick, L., Meletiou-Mavrotheris, M., Paparistodemou, E., & Stylianou, E. (2023). The prevalence and use of emerging technologies in STEAM education: A systematic review of the literature. Journal of Computer Assisted Learning, 39(4), 1061–1082. https://doi.org/10.1111/jcal.12806 Levchenko, I., Xu, S., Mazouffre, S., Keidar, M., & Bazaka, K. (2021). Mars colonization: Beyond getting there. Terraforming Mars, 73–98. Liew, T. H., Lau, S. H., & Ismail, H. (2020). Children Video Puzzle Interaction Framework Based on Multi-Touch Technology: An ISO 9241-11: 2018 Approach. International Journal of Advanced Research in Education and Society, 2(2), 55–69. Lile, R., & Bran, C. (2014). The Assessment of Learning Outcomes. Procedia - Social and Behavioral Sciences, 163, 125–131. https://doi.org/10.1016/j.sbspro.2014.12.297 Lin, C. min, & Chiu, C. yen. (2023). The Influence of Picture Book Integrated Gender Equality Education Curriculum on the Physical Autonomy Cognition of Junior Elementary School Children. Journal of Educational Media & Library Sciences, 60(3), 261-292. doi:0.6120/JoEMLS.202311_60(3).0004.RS.CM Malta, A., Farinha, T., & Mendes, M. (2023). Augmented Reality in Maintenance—History and Perspectives. Journal of Imaging, 9(7), Article 7. https://doi.org/10.3390/jimaging9070142 Matthews, G., De Winter ,Joost, & and Hancock, P. A. (2020). What do subjective workload scales really measure? Operational and representational solutions to divergence of workload measures. Theoretical Issues in Ergonomics Science, 21(4), 369–396. https://doi.org/10.1080/1463922X.2018.1547459 Maturana, H. R. (1990). Science and daily life: The ontology of scientific explanations. In Selforganization: Portrait of a scientific revolution (pp. 12–35). Springer. Mayer, R. E., & and Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 43–52. https://doi.org/10.1207/S15326985EP3801_6 Mayer, R. E., & Moreno, R. (1998). A cognitive theory of multimedia learning: Implications for design principles. Journal of Educational Psychology. Mengziyoyevna, R. D. (2022). TECHNOLOGY of Formation of Natural-scientific Literacy in Primary School Students. European Scholar Journal, 3(4), 12–14. Midak, L. Y., Kravets, I. V., Kuzyshyn, O. V., Berladyniuk, K. V., Buzhdyhan, K. V., Baziuk, L. V., & Uchitel, A. D. (2020, November). Augmented reality in process of studying astronomic concepts in primary school. CEUR Workshop Proceedings. http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4411 Midak, L. Y., Kravets, I. V., Kuzyshyn, O. V., Berladyniuk, K. V., Buzhdyhan, K. V., Baziuk, L. V., & Uchitel, A. D. (2020). Augmented reality in process of studying astronomic concepts in primary school. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158 Minkley, N., Xu, K. M., & Krell, M. (2021). Analyzing Relationships Between Causal and Assessment Factors of Cognitive Load: Associations Between Objective and Subjective Measures of Cognitive Load, Stress, Interest, and Self-Concept. Frontiers in Education, 6. https://doi.org/10.3389/feduc.2021.632907 Mokmin, N. A. M., Hanjun, S., Jing, C., & Qi, S. (2024). Impact of an AR-based learning approach on the learning achievement, motivation, and cognitive load of students on a design course. Journal of Computers in Education, 11(2), 557–574. Na, H., Staudt Willet, K. B., & Kim, C. (2025). Investigating the impact of AR technologies on geometric learning in primary school: A comparison between marker‐based and markerless AR. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13584 Ngu, B. H., Phan, H. P., Usop, H., & Hong, K. S. (2023). Instructional efficiency: The role of prior knowledge and cognitive load. Applied Cognitive Psychology, 37(6), 1223–1237. https://doi.org/10.1002/acp.4117 Nielsen, J. (2005). Ten usability heuristics. Novianti, S., Sari, L. Y., & Afza, A. (2022a). Factors caused difficulty in learning science for students. Journal Of Biology Education Research (JBER), 3(2), 50–59. Novianti, S., Sari, L. Y., & Afza, A. (2022b). Factors caused difficulty in learning science for students. Journal Of Biology Education Research (JBER), 3(2), 50–59. Osborne, J. (2023). Science, scientific literacy, and science education. In Handbook of research on science education (pp. 785–816). Routledge. Paas, F., & Van Merrienboer, J. J. (2020). Cognitive-load theory: Methods to manage working memory load in the learning of complex tasks. Current Directions in Psychological Science, 29(4), 394–398. Panciroli, C., Fabbri, M., Luigini, A., Macauda, A., Corazza, L., & Russo, V. (2023). Augmented Reality in Arts Education. In A. Y. C. Nee & S. K. Ong (Eds.), Springer Handbook of Augmented Reality (pp. 305–333). Springer International Publishing. https://doi.org/10.1007/978-3-030-67822-7_12 Parekh, R. (2025). Principles of Multimedia. CRC Press. Pedaste, M., Baucal, A., & Reisenbuk, E. (2021). Towards a science inquiry test in primary education: Development of items and scales. International Journal of STEM Education, 8, 1–19. Peeters, H., Habig, S., & Fechner, S. (2023). Does Augmented Reality Help to Understand Chemical Phenomena during Hands-On Experiments?–Implications for Cognitive Load and Learning. Multimodal Technologies and Interaction, 7(2), Article 2. https://doi.org/10.3390/mti7020009 Priyono, C. D., Sok, V., & Souza, F. (2024). The Use of Augmented Reality in History Education: A Study on Conceptual Understanding Effects. Journal Neosantara Hybrid Learning, 2(3), Article 3. https://doi.org/10.70177/jnhl.v2i3.1613 Purnamasari, R., Suchyadi, Y., Karmila, N., Nurlela, N., Santa, Mirawati, M., Handayani, R., Indriani, R. S., Anwar, W. S., & Kurnia, D. (2020). STUDENT CENTER BASED CLASS MANAGEMENT ASSISTANCE THROUGH THE IMPLEMENTATION OF DIGITAL LEARNING MODELS AND MEDIA. Journal of Community Engagement (JCE), 2(2), Article 2. Purnamasari, R., Suchyadi, Y., Karmila, N., Nurlela, N., Santa, Mirawati, M., Handayani, R., Indriani, R. S., Anwar, W. S., & Kurnia, D. (2020). STUDENT CENTER BASED CLASS MANAGEMENT ASSISTANCE THROUGH THE IMPLEMENTATION OF DIGITAL LEARNING MODELS AND MEDIA. Journal of Community Engagement (JCE), 2(2), Article 2. Redifer, J. L., Bae, C. L., & Zhao, Q. (2021). Self-efficacy and performance feedback: Impacts on cognitive load during creative thinking. Learning and Instruction, 71, 101395. https://doi.org/10.1016/j.learninstruc.2020.101395 Rosenberg, L. B. (1992). The use of virtual fixtures as perceptual overlays to enhance operator performance in remote environments. Air force material command, 1-42. https://www.researchgate.net/profile/Louis-Rosenberg/publication/235116787_The_Use_of_Virtual_Fixtures_as_Perceptual_Overlays_to_Enhance_Operator_Performance_in_Remote_Environments/links/663fb93d7091b94e931dede2/The-Use-of-Virtual-Fixtures-as-Perceptual-Overlays-to-Enhance-Operator-Performance-in-Remote-Environments.pdf Rozi, I. F., Larasati, E., Lestari, V. A., & Priandani, N. D. (2023). Usability Evaluation of English Learning Application Base on Augmented Reality Using ISO 9241. Journal of Information Technology and Computer Science, 8(1), 1–10. Rusydiana, U., Widodo, W., & Suprapto, N. (2023). The Development of Picture Story Book to Improve the Science Literacy Skills of Grade 4 Elementary School Student. Studies in Philosophy of Science and Education, 4(1), Article 1. https://doi.org/10.46627/sipose.v4i1.274 Saadon, N. F. S. M., Ahmad, I., & Hanapi, A. N. C. P. @ C. (2020). The Implementation of Augmented Reality in Increasing Student Motivation: Systematic Literature Review. IOP Conference Series: Materials Science and Engineering, 854(1), 012043. https://doi.org/10.1088/1757-899X/854/1/012043 Saadon, N. F. S. M., Ahmad, I., & Hanapi, A. N. C. P. @ C. (2020). The Implementation of Augmented Reality in Increasing Student Motivation: Systematic Literature Review. IOP Conference Series: Materials Science and Engineering, 854(1), 012043. https://doi.org/10.1088/1757-899X/854/1/012043 Sahin, D., & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students’ achievements and attitudes towards science education. Computers & Education, 144, 103710. Salmi, H. S., Thuneberg, H., & Bogner, F. X. (2023). Is there deep learning on Mars? STEAM education in an inquiry-based out-of-school setting. Interactive Learning Environments, 31(2), 1173–1185. Sawilowsky, S. (2009). New Effect Size Rules of Thumb. Journal of Modern Applied Statistical Methods, 8(2). https://doi.org/10.22237/jmasm/1257035100 Schüler, A., Pazzaglia, F., & Scheiter, K. (2019). Specifying the boundary conditions of the multimedia effect: The influence of content and its distribution between text and pictures. British Journal of Psychology, 110(1), 126–150. https://doi.org/10.1111/bjop.12341 Sedgwick, P. (2014). Spearman’s rank correlation coefficient. Bmj, 349. Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.2307/2333709 Sharon, A. J., & Baram‐Tsabari, A. (2020). Can science literacy help individuals identify misinformation in everyday life? Science Education, 104(5), 873–894. Sheehan, W., & Bell, J. (2021). Discovering Mars: A history of observation and exploration of the Red Planet. University of Arizona Press. Sidiq, Y., Ishartono, N., Desstya, A., Prayitno, H. J., Anif, S., & Hidayat, M. L. (2021). Improving Elementary School Students’ Critical Thinking Skill in Science through HOTS-based Science Questions: A Quasi-Experimental Study. Jurnal Pendidikan IPA Indonesia, 10(3), Article 3. https://doi.org/10.15294/jpii.v10i3.30891 Simbolon, S. U., Ansari, K., & Simbolon, N. (2020). Work Sheet Development Based on Through Skills Based on High Level of Thematic Learning in 5th grade of Primary School (SD Negeri 040460 Berastagi T.A 2019/2020). Britain International of Linguistics Arts and Education (BIoLAE) Journal, 2(1), Article 1. https://doi.org/10.33258/biolae.v2i1.214 Siriborvornratanakul, T. (2018). Enhancing User Experiences of Mobile‐Based Augmented Reality via Spatial Augmented Reality: Designs and Architectures of Projector‐Camera Devices. Advances in Multimedia, 2018(1), 8194726. Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M. (2021). A Survey on Mobile Augmented Reality With 5G Mobile Edge Computing: Architectures, Applications, and Technical Aspects. IEEE Communications Surveys & Tutorials, 23(2), 1160–1192. https://doi.org/10.1109/COMST.2021.3061981 Skulmowski, A., & Xu, K. M. (2022). Understanding Cognitive Load in Digital and Online Learning: A New Perspective on Extraneous Cognitive Load. Educational Psychology Review, 34(1), 171–196. https://doi.org/10.1007/s10648-021-09624-7 Surbakti, R., Umboh, S. E., Pong, M., & Dara, S. (2024). Cognitive Load Theory: Implications for Instructional Design in Digital Classrooms. International Journal of Educational Narratives, 2(6), Article 6. https://doi.org/10.70177/ijen.v2i6.1659 Suzanna, Sasmoko, Gaol F. L., & Oktavia T. (2023, November 1). Augmented Reality SDK Overview for General Application Use. | EBSCOhost. https://doi.org/10.14569/ijacsa.2023.0141106 Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7 Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. https://doi.org/10.1016/0959-4752(94)90003-5 Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16. https://doi.org/10.1007/s11423-019-09701-3 Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16. https://doi.org/10.1007/s11423-019-09701-3 Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design. Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205 Tarng, W., Huang, J.-K., & Ou, K.-L. (2024). Improving Elementary Students’ Geometric Understanding Through Augmented Reality and Its Performance Evaluation. Systems, 12(11), 493. Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316 Thomas, P. C., & David, W. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes. 2, 659–669. Tran, T., Ho, M.-T., Pham, T.-H., Nguyen, M.-H., Nguyen, K.-L. P., Vuong, T.-T., Nguyen, T.-H. T., Nguyen, T.-D., Nguyen, T.-L., & Khuc, Q. (2020). How digital natives learn and thrive in the digital age: Evidence from an emerging economy. Sustainability, 12(9), 3819. van Gog, T. (2021). The Signaling (or Cueing) Principle in Multimedia Learning. In R. E. Mayer & L. Fiorella (Eds.), The Cambridge Handbook of Multimedia Learning (pp. 221–230). Cambridge University Press. https://doi.org/10.1017/9781108894333.022 Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177. Vanneste, P., Raes, A., Morton, J., Bombeke, K., Van Acker, B. B., Larmuseau, C., Depaepe, F., & Van den Noortgate, W. (2021). Towards measuring cognitive load through multimodal physiological data. Cognition, Technology & Work, 23(3), 567–585. https://doi.org/10.1007/s10111-020-00641-0 Wang, R. (2022, February 3). Frontiers | Application of Augmented Reality Technology in Children’s Picture Books Based on Educational Psychology. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.782958/full Wardani, D. S., Widodo, A., & Puspita, R. D. (2023). The Effect of the Empirical Base Nature of Science Learning Model on the Understanding of Nature of Science in Empirical Aspect. JPI (Jurnal Pendidikan Indonesia), 12(2), 245–253. Wu, J., Jiang, H., Long, L., & Zhang, X. (2024). Effects of AR mathematical picture books on primary school students’ geometric thinking, cognitive load and flow experience. Education and Information Technologies, 29(18), 24627–24652. https://doi.org/10.1007/s10639-024-12768-y Wuppuluri, S., & Doria, F. A. (2018). How We Make Sense of the World: Information, Map-Making, and the Scientific Narrative | SpringerLink. https://link.springer.com/chapter/10.1007/978-3-319-72478-2_8 Yan, W., & Ma, M. (2023). Augmented Reality Picture Books For Children: A Review. Journal of Educational Multimedia and Hypermedia, 31(4), 361–383. Yousef, A. M. F. (2021). Augmented reality assisted learning achievement, motivation, and creativity for children of low-grade in primary school. Journal of Computer Assisted Learning, 37(4), 966–977. https://doi.org/10.1111/jcal.12536 Yuliana, I., Cahyono, M. E., Widodo, W., & Irwanto, I. (2021). The Effect of Ethnoscience-Themed Picture Books Embedded within Context-Based Learning on Students’ Scientific Literacy. Eurasian Journal of Educational Research. https://eric.ed.gov/?id=EJ1294081 Zandavi, S. M., Hu, Z., Chung, Y. Y., & Anaissi, A. (2019). Augmented Reality Vision Improving Educational Learning. Aust. J. Intell. Inf. Process. Syst., 15(3), 49–58. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信