§ Browsing ETD Metadata
  
System No. U0002-1108201517114200
Title (in Chinese) 仿生蜂鳥機構之運動分析及搖撼力矩
Title (in English) Kinematic and Shaking Moment Analysis of a Hummingbird-like Mechanism
Other Title
Institution 淡江大學
Department (in Chinese) 機械與機電工程學系碩士班
Department (in English) Department of Mechanical and Electro-Mechanical Engineering
Other Division
Other Division Name
Other Department/Institution
Academic Year 103
Semester 2
PublicationYear 104
Author's name (in Chinese) 周子傑
Author's name(in English) Tzu-Chieh Chou
Student ID 602370560
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2015-07-13
Pagination 47page
Committee Member advisor - Liu-Chao Hwa
co-chair - Chen-Jheng Guang
co-chair - Wang-Yin Tian
Keyword (inChinese) 史蒂芬森三型六連桿機構
伊式四連桿直線機構
相位差
靜態平衡
動態平衡
搖撼力
搖撼力矩
Keyword (in English) Stephenson III six-bar Mechanism
Evans four-bar straight-line Mechanism
Phase angle
static balance
dtnamic balance
Shaking Force
Shaking Moment
Other Keywords
Subject
Abstract (in Chinese)
本論文針對仿生蜂鳥機構進行運動分析以及討論四連桿機構之搖撼力與搖撼力矩。蜂鳥機構由史蒂芬森第三型六連桿機構、及兩翼機構所組成,其中史蒂芬森第三型六連桿機構包含伊式四連桿直線機構。本論文首先從事六連桿機構及兩翼機構之位置分析,求出兩翼之相位差,然後進行六連桿機構及兩翼機構之速度、以及加速度分析,求出速度及加速度相位差。本論文並討論四連桿機構之靜態平衡以及動態平衡。利用四連桿機構運轉之中,對地面反作用力合力等於慣性力的合力求出搖撼力之通式。接著利用外力造成之合力矩等於慣性力所造成之合力矩,求得搖撼力矩之通式。由這些通式發現傳動角若接近0度或180度,搖撼力以及搖撼力矩數值會趨近無限大。
Abstract (in English)
In this thesis the author performs kinematic analyses of a Hummingbird-like MAV and then studies shaking force and shaking moment of four-bar linkages. The MAV contains a Stephenson III six-bar mechanism, and two wing-mechanisms. The Stephenson III six-bar linkage contains an Evans four-bar straight-line mechanism. Position analysis of the Stephenson III six-bar mechanism and two wing-mechanisms are first performed to obtain the phase lag between the two wings, followed by velocity as well as acceleration analyses, from which velocity and acceleration differences between the two wings are calculated.
Static balancing and dynamic balancing of four-bar linkages are then studied. The resultant of reaction forces on the ground is equal to the resultant of inertia forces; hence a general expression for shaking force is obtained. Similarly, since the resultant moment of all applied forces is equal to the resultant moment of inertia forces, a general expression for shaking moment is also obtained. These expressions show that shaking force and shaking moment depend upon transmission angles of the four-bar linkage, and both shanking force and shaking moment reach infinity when transmission angle reaches the values 0 degree or 180 degree.
Other Abstract
Table of Content (with Page Number)
目錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VI
第1章	緒論	1
1-1前言	1
1-2文獻回顧及研究動機	2
第2章	仿生蜂鳥機構分析	4
2-1仿生蜂鳥機構介紹	4
2-2史蒂芬生第三型六連桿機構分析	5
2-2-1史蒂芬生第三型六連桿位置分析	5
2-2-2蜂鳥右翼機構位置分析	6
2-2-3蜂鳥左翼機構位置分析	8
2-3仿生蜂鳥機構速度分析	10
2-3-1史蒂芬生第三型六連桿速度分析	10
2-3-2蜂鳥右翼機構速度分析	11
2-3-3蜂鳥左翼機構速度分析	11
2-4仿生蜂鳥機構加速度分析	12
2-4-1史蒂芬生第三型六連桿加速度分析	12
2-4-2蜂鳥右翼機構加速度分析	13
2-4-3蜂鳥左翼機構加速度分析	14
第3章	仿生蜂鳥機構相位差分析	15
3-1角度相位差分析	15
3-2速度相位差分析	16
3-3加速度相位差分析	16
第4章	四連桿機構之平衡	17
4-1四連桿機構之靜態平衡	17
4-2四連桿機構之搖撼力	19
4-3四連桿機構之搖動力矩	24
第5章	結論	29
參考文獻	31

圖目錄
圖一 仿生蜂鳥機構	33
圖二 史蒂芬森三型六連桿機構	34
圖三 史蒂芬森三型六連桿機構	35
圖四 蜂鳥右翼機構	36
圖五 蜂鳥左翼機構	37
圖六 蜂鳥左右翼位置相位差圖	38
圖七 蜂鳥左右翼位置相位差圖	39
圖八 蜂鳥左右翼位置相位差異圖	40
圖九 蜂鳥左右翼速度相位差異圖	41
圖十 蜂鳥左右翼加速度相位差異圖	42
圖十一 四連桿機構所有桿件質心位置以及總質心位置	43
圖十二 四連桿機構之桿件二慣性力及力矩圖	44
圖十三 四連桿機構之桿件三慣性力及力矩圖	45
圖十四 四連桿機構之桿件四慣性力及力矩圖	46
圖十五 四連桿機構質心位置以及質量慣性矩	47
References
[1]	Berkof, R.S., and Lowen, G.G., “a new method for completely       force balancing simple linkages ”, Journal of Engineering for Industry, 1969, pp.21-26.
[2]	張育晨,仿生微型蜂鳥機構之靜態平衡,淡江大學,機械與機電工程學系碩士論文,2014。
[3]	Berkof, R. S., and G. G. Lowen. “Theory of Shaking moment Optimization of Force Balanced Four-Bar Linkages. ” Trans. ASME J. of Eng. For Industry, (February), 1971, pp. 53-60.
[4]	R. S. Berkof., “Complete Force and Moment Balancing of Inline Four-Bar Linkages.” J. Mechanism and Machine Theory, 8(August), 1972, pp. 397-410.
[5]	Hockey, B. A., “ An Improved Technique for Reducing the Flu- cation of Kinetic Energy in Plane Mechanisms. ” J. Mechanisms, 6, 1971, pp.405-418.
[6]	Hockey, B. A., “ The Minimization of the Fluctuation of Input Torque in Plane Mechanisms.” Mechanism amd Machine Theory, 7, 1972, pp. 335-346.
[7]	Berkof, R. S. “ The Input Torque in Linkages. ”Mechanism and Machine Theory, 14, 1979, pp. 61-73.
[8]	Lee, T. W., and C. Cheng.“ Optimum Balancing of Combined Shaking Force, Shaking Moment, and Torque Fluctuations in Hugh Speed Linkages. ” Trans. ASME J. Mechanisms, Transmis- s ion, Automation and Design, 106, 1984, pp.242-251
[9]	Qi, N. M., and E. Pennestri.“ Optimun Balancing of Fourbar Linkages.” Mechanism and Machine Theory, 26(3), 1991, pp. 337-348
[10]	Sandor G.N., and Erdman, A.G., Advanced Mechanism Design:    Analysis and Synthesis, Prentice-Hall, Inc., NJ, 1984.
[11]	陳建凱,仿生蜂鳥飛行機構運動及誤差分析,淡江大學,機 械與機電工程學系碩士論文,2014。
[12]	Norton, R. L. Design of Machinery: An Introduction to the  Synthesis and Analysis of Mechanisms and Machines, McGraw Hill, Fourth Edition, 2008.
Terms of Use
Within Campus
On-campus access to my hard copy thesis/dissertation is open immediately
Release immediately
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and contact me for receiving the payment.
Release immediately
 Top

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email