系統識別號 | U0002-1107202310513600 |
---|---|
DOI | 10.6846/tku202300345 |
論文名稱(中文) | 網路關鍵字搜尋行為反映投資人情緒之研究 |
論文名稱(英文) | How Internet Keyword Search Behavior Reflects Investor Sentiment in Financial Markets |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 財務金融學系博士班 |
系所名稱(英文) | Department of Banking and Finance |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 111 |
學期 | 2 |
出版年 | 112 |
研究生(中文) | 許信輝 |
研究生(英文) | Hsin-Hui Hsu |
學號 | 806530050 |
學位類別 | 博士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2023-07-08 |
論文頁數 | 102頁 |
口試委員 |
口試委員
-
邱建良
口試委員 - 林忠機 口試委員 - 蕭榮烈 口試委員 - 鄭東光 口試委員 - 涂登才 口試委員 - 王譯賢 口試委員 - 洪瑞成 指導教授 - 邱建良(100730@tku.edu.tw) 指導教授 - 張鼎煥(ctingh@uch.edu.tw) |
關鍵字(中) |
Google搜尋趨勢指數 股票報酬 投資人情緒 波動 縱橫門檻迴歸模型 |
關鍵字(英) |
Google Search Volume Index Stock Return Investor Sentiment Volatility Panel Threshold Regression |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文由三篇研究構成,旨在探討Google搜尋趨勢指數對股票報酬及市場波動的影響,並評估其作為投資人情緒代理變數的效果。研究樣本包括臺灣資本額百億以上上市公司,涵蓋2012年7月至2022年6月共10年期間資料。並分析Google搜尋趨勢指數與成交量、股價淨值比、股價盈餘比交互作用對股票報酬影響,以深入瞭解其相關性。 研究發現,前5年樣本中股票報酬風險相對較低且受系統性風險影響較小。後5年之樣本較前5年之樣本股市成交量放大且Google搜尋趨勢指數上升。Google搜尋趨勢指數作為投資人情緒的代理變數正向顯著影響股票報酬,並推升成交量和股價。Google搜尋趨勢指數與股價盈餘比交乘項在後5年出現正向顯著之反轉現象。 研究進一步發現,在縱橫資料門檻迴歸模型下,股票報酬做為門檻變數得以區隔Google搜尋趨勢指數對股票報酬不同程度影響之門檻效果,於門檻值-4.8086%上、下兩側形成區間分界。投資人易因搜尋資訊產生過度樂觀與過度悲觀反應,導致股票報酬持續上漲與下跌,因此Google搜尋趨勢指數做為投資人情緒代理變數,得以解釋股票報酬,促進價格發現與市場效率,成為投資決策重要參考指標。 最後探討Google搜尋趨勢指數及其分別與股票報酬與臺灣加權指數報酬交互作用對市場波動之影響。研究結果顯示,Google搜尋趨勢指數做為投資人情緒代理變數與正向顯著影響股價波動風險解釋因子;搜尋頻率強度,反映投資人對股票關注程度與情緒反應;相較單一參數股票報酬情形下,Google搜尋趨勢指數與股票報酬交乘項對股價波動風險有收斂效果及負向顯著影響;Google搜尋趨勢指數與臺灣加權指數報酬交乘項,對臺灣加權指數報酬對股價波動風險有收斂效果及正向顯著影響。 研究顯示Google搜尋趨勢指數做為投資人情緒代理變數,得以解釋股票報酬,促進價格發現與市場效率,有助投資人更準確地預測股價波動風險趨勢,成為投資決策重要參考指標,亦隱含投資人易受情緒影響。 |
英文摘要 |
This thesis consists of three studies aimed at exploring the impact of the Google Search Volume Index on stock returns and market volatility, as well as evaluating its effectiveness as a proxy variable for investor sentiment using the Panel Threshold Regression model. The research sample includes listed companies in Taiwan with a capitalization of over one billion NT dollars, covering data from July 2012 to June 2022, a total of ten years. Additionally, the study analyzes the interactive effects of the Google Search Volume Index with trading volume, price-to-book ratio, and price-earnings ratio on stock returns to gain deeper insights into their correlations. The findings reveal that in the first five years of the sample, stock returns exhibited relatively lower risk and were less influenced by systematic risk. In the latter five years, the stock market's trading volume expanded, and the Google Search Volume Index increased. The Google Search Volume Index, as a proxy variable for investor sentiment, significantly and positively influenced stock returns, driving trading volume and stock prices higher. During the latter five years, there was a reversal phenomenon with a significant positive interaction effect between the Google Search Volume Index and the price-earnings ratio. Furthermore, this research discovered that, in the Panel Threshold Regression model, stock returns serve as a threshold variable to distinguish the varying impacts of the Google Search Volume Index on stock returns, forming an interval boundary on both sides of the threshold value of -4.8086%. Investors are prone to exhibit excessively optimistic or pessimistic reactions due to search information, leading to sustained increases or decreases in stock returns. Therefore, the Google Search Volume Index, as a proxy variable for investor sentiment, can explain stock returns, promote price discovery, and enhance market efficiency, becoming an essential reference indicator for investment decisions. Finally, the study explores the interactive effects of the Google Search Volume Index, stock returns, and the Taiwan Weighted Index returns on market volatility using the Panel Threshold Regression model. The results indicate that the Google Search Volume Index, as a proxy variable for investor sentiment, positively and significantly affects the explanatory factors of stock price volatility. The intensity of search frequency reflects investors' attention and emotional responses to stocks. Compared to the scenario with a single parameter of stock returns, the interaction effect between the Google Search Volume Index and stock returns has a converging and negative significant impact on stock price volatility. The interaction effect between the Google Search Volume Index and Taiwan Weighted Index returns has a converging and positively significant impact on the stock price volatility of the Taiwan Weighted Index returns. The research demonstrates that the Google Search Volume Index, as a proxy variable for investor sentiment, can explain stock returns, promote price discovery, and enhance market efficiency, helping investors predict stock price volatility trends more accurately. It becomes a crucial reference indicator for investment decisions, also implying that investors are susceptible to emotional influences. |
第三語言摘要 | |
論文目次 |
目 次 I 第一篇Google搜尋趨勢指數對臺灣股市大型公司之影響 1 摘要 1 壹、研究背景與目的 3 貳、文獻回顧 7 一、Google搜尋趨勢指數對股票報酬相關研究 7 二、投資人情緒對股票報酬相關研究 8 三、股價淨值比與股價盈餘比對股票報酬相關研究 9 參、研究方法與步驟 11 一、變數定義 11 二、縱橫資料迴歸模型 13 肆、資料來源與基本敘述統計 16 一、資料來源 16 二、基本敘述統計 17 伍、實證結果分析 19 陸、結論 25 參考文獻 27 第二篇 股價漲跌是否引發網路熱搜反映投資人情緒? 30 摘要 30 壹、研究背景與目的 32 貳、文獻回顧 36 一、Google搜尋趨勢指數對股票報酬相關文獻回顧 36 二、投資人情緒對股票報酬相關研究 38 三、股價淨值比與股價盈餘比對股票報酬相關研究 40 四、週轉率、成交量對股票報酬相關研究 42 參、研究方法與步驟 44 一、變數定義 44 二、縱橫門檻迴歸模型 45 肆、資料來源與基本敘述統計 51 一、資料來源 51 二、基本敘述統計 52 伍、實證結果分析 54 陸、結論 62 參考文獻 64 第三篇 關鍵字搜尋行為與股價波動風險 69 摘要 69 壹、研究背景與目的 71 貳、文獻回顧 74 一、關鍵字搜尋行為反映投資人情緒相關研究 74 二、投資人情緒與股價波動風險相關研究 77 參、研究方法與步驟 81 一、變數定義 81 二、縱橫資料迴歸模型 83 肆、資料來源與基本敘述統計 86 一、資料來源 86 二、基本敘述統計 87 伍、實證結果分析 90 陸、結論 98 參考文獻 100 表 次 IV 第一篇 表1、2013年至2017年樣本之基本敘述統計(前5年) 18 表2、2018年至2022年樣本之基本敘述統計(後5年) 18 表3、縱模資料模型實證結果 24 第二篇 表1、2013年至2022年樣本之基本敘述統計 53 表2、縱橫資料迴歸模型實證結果 58 表3、縱橫門檻迴歸模型檢定 59 表4、單門檻之縱橫門檻迴歸模型之迴歸係數 61 第三篇 表1、2013年1月至2022年6月樣本之基本敘述統計 89 表2、縱模資料模型實證結果 97 圖 次 V 第一篇 圖1、臺灣搜尋引擎市占率 4 圖2、臺灣資本額100億元以上公司Google搜尋趨勢週平均指數 6 第二篇 圖1、2013年至2022年臺灣股市新開戶人數統計 35 圖2、2013年至2023年1月臺灣搜尋引擎市佔率 35 圖3、2013年至2023年週平均之Google搜尋趨勢指數 53 圖4、第一門檻參數估計值 59 圖5、第二門檻參數估計值 60 圖6、第三門檻參數估計值 60 第三篇 圖1、2013年至2022年臺灣資本額100億元以上公司週平均Google搜尋趨勢指數 89 |
參考文獻 |
第一篇 王明昌、許婉琪、李飛涵與柯建全(2022),市場恐慌情緒對台股新聞事件之股價反應的影響,管理與系統,29(2):147-186。 何怡滿與陳雯琪(2019),投資人關注度對台灣50指數成分股之股票報酬與公司績效的影響,屏東大學學報-管理類,(2):73-103。 李永隆、杜玉振與王瑋瑄(2017),Google搜尋量指數對臺灣股票報酬與成交量之影響,管理與系統,24(4):565-590。 劉清標、林筱鳳與陳宏榮(2017),股價報酬與投資人情緒之預測,財金論文叢刊,(26):1-18。 趙慶祥、葉錦徽與梁景婷(2022),情緒與總經宣告對風險與期望報酬抵換關係之影響,證券市場發展季刊,34(1):135-176。 Ang, A., & Bekaert, G. (2007). Stock return predictability: Is it there?. Review of Financial Studies, 20(3), 651-707. Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. Journal of Finance, 59(3), 1259-1294. Capaul, C., Rowley, I., & Sharpe, W. F. (1993). International value and growth stock returns. Financial Analysts Journal, 49(1), 27-36. Chai, D., Dai, M., Gharghori, P., & Hong, B. (2021). Internet search intensity and its relation with trading activity and stock returns. International Review of Finance, 21(1), 282-311. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. Journal of Finance, 66(5), 1461-1499. Fama, E. F. (1976). Efficient capital markets: reply. Journal of Finance, 31(1), 143-145. Fama, E. F., & French, K. R. (1992). The cross‐section of expected stock returns. Journal of Finance, 47(2), 427-465. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3-56. Fama, E. F., & French, K. R. (1995). Size and book‐to‐market factors in earnings and returns. Journal of Finance, 50(1), 131-155. Fama, E. F., & French, K. R. (1996). Multifactor explanations of asset pricing anomalies. Journal of Finance, 51(1), 55-84. Fama, E. F., & French, K. R. (1998). Value versus growth: The international evidence. Journal of Finance, 53(6), 1975-1999. Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(2), 345-368. Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the Econometric Society, 1251-1271. Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing, 285, 188-195. Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127. Lakonishok, J., Shleifer, A., & Vishny, R. W. (1994). Contrarian investment, extrapolation, and risk. Journal of Finance, 49(5), 1541-1578. Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. Review of Financial Studies, 1(1), 41-66. Salisu, A. A., Ogbonna, A. E., & Adediran, I. (2021). Stock‐induced Google trends and the predictability of sectoral stock returns. Journal of Forecasting, 40(2), 327-345. Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal, 27, 1-18. Wanidwaranan, P., & Padungsaksawasdi, C. (2022). Unintentional herd behavior via the Google search volume index in international equity markets. Journal of International Financial Markets, Institutions and Money, 77, 101503. 第二篇 王明昌、許婉琪、李飛涵與柯建全(2022),市場恐慌情緒對台股新聞事件之股價反應的影響,管理與系統,29(2),147-186。 何怡滿與陳雯琪(2019),投資人關注度對臺灣50指數成分股之股票報酬與公司績效的影響,屏東大學學報—管理類,2,73-103。 李永隆、杜玉振與王瑋瑄(2017),Google搜尋量指數對臺灣股票報酬與成交量之影響,管理與系統,24(4),565-590。 胡星陽(1998),流動性對台灣股票報酬率的影響,中國財務學刊,5(4),1-19。 周賓凰、張宇志與林美珍(2019),投資人情緒與股票報酬互動關係,證券市場發展季刊:行為財務學特別專刊,153。 劉玉珍、周行一與潘璟靜(1996),臺灣股市價格限制與交易行為,中國財務學刊,4(2),41-60。 趙慶祥、葉錦徽與梁景婷(2022),情緒與總經宣告對風險與期望報酬抵換關係之影響,證券市場發展季刊,34(1),135-176。 謝文良與林苑宜(2012),台灣股市之流動性共變現象,證券市場發展季刊,24(4),135-186。 Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. Journal of Finance, 59(3), 1259-1294. Bock, J. (2018). Quantifying macroeconomic expectations in stock markets using Google trends. SSRN Electronic Journal. Campbell, J. Y., Grossman, S. J., & Wang, J. (1993). Trading Volume and Serial Correlation in Stock Returns, Quarterly Journal of Economics,108(4), 905-939. Capaul, C., Rowley, I., & Sharpe, W. F. (1993). International value and growth stock returns. Financial Analysts Journal, 49(1), 27-36. Chai, D., Dai, M., Gharghori, P., & Hong, B. (2021). Internet search intensity and its relation with trading activity and stock returns. International Review of Finance, 21(1), 282-311. Chan, K. S. (1993). Consistency and Limiting Distribution of the Least Squares Estimator of a Threshold Autoregressive Model. The Annals of Statistics ,21 (1): 520-533. Chordia, T., & Swaminathan, B. (2000). Trading Volume and Cross Autocorrelations in Stock Returns. Journal of Finance,55(2),913-935. Conrad, J. S., Hameed, A., & Niden, C. (1994). Volume and Autocovariances in Short Horizon Individual Security Returns, Journal of Finance,49(4), 1305-1330. Cooper, M. (1999), Filter Rules based on Price and Volume in Individual Security Overreaction, Review of Financial Studies,12(4), 901-935. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. Journal of Finance, 66(5), 1461-1499. Fama, E. F., & French, K. R. (1992). The cross‐section of expected stock returns. Journal of Finance, 47(2), 427-465. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3-56. Fama, E. F., & French, K. R. (1995). Size and book‐to‐market factors in earnings and returns. Journal of Finance, 50(1), 131-155. Fama, E. F., & French, K. R. (1996). Multifactor explanations of asset pricing anomalies. Journal of Finance, 51(1), 55-84. Fama, E. F., & French, K. R. (1998). Value versus growth: The international evidence. Journal of Finance, 53(6), 1975-1999. Gervais, S., Kaniel, R., & Mingelgrin, D. H. (2001). The High-Volume Return Premium. Journal of Finance, 56(3), 877-919. Greene, W. (1999). Econometric Analysis, Macmillan, New York. Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(2), 345-368. Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the Econometric Society, 1251-1271. Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing, 285, 188-195. Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127. Lakonishok, J., Shleifer, A., & Vishny, R. W. (1994). Contrarian investment, extrapolation, and risk. Journal of Finance, 49(5), 1541-1578. Lee, C. M., & Swaminathan, B. (2000). Price Momentum and Trading Volume. Journal of Finance, 55(5), 2017-2069. Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. Review of Financial Studies, 1(1), 41-66. Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal, 27, 1-18. Vlastakis, N., & Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance, 36(6), 1808-1821. Wanidwaranan, P., & Padungsaksawasdi, C. (2022). Unintentional herd behavior via the Google search volume index in international equity markets. Journal of International Financial Markets, Institutions and Money, 77, 101503. 第三篇 李永隆、杜玉振與王瑋瑄(2017),Google搜尋量指數對臺灣股票報酬與成交量之影響,管理與系統,24(4):565-590。 何怡滿與陳雯琪(2019),投資人關注度對臺灣50指數成分股之股票報酬與公司績效的影響,屏東大學學報—管理類,2,73-103。 周賓凰、張宇志與林美珍(2019),投資人情緒與股票報酬互動關係,證券市場發展季刊:行為財務學特別專刊,153。 Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. Journal of Finance, 59(3), 1259-1294. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. Chen, Y., Zhao, H., Li, Z., & Lu, J. (2020). A dynamic analysis of the relationship between investor sentiment and stock market realized volatility: Evidence from China. PloS One, 15(12), e0243080. Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2-9. Curme, C., Preis, T., Stanley, H. E., & Moat, H. S. (2014). Quantifying the semantics of search behavior before stock market moves. Proceedings of the National Academy of Sciences, 111(32), 11600-11605. Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. Journal of Finance, 66(5), 1461-1499. Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417. Foucault, T., Sraer, D., & Thesmar, D. J. (2011). Individual investors and volatility. Journal of Finance, 66(4), 1369-1406. Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the Econometric Society, 1251-1271. Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing, 285, 188-195. Joseph, K., Wintoki, M. B., & Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search. International Journal of Forecasting, 27(4), 1116-1127. Lux, T., & Marchesi, M. (1999). Scaling and criticality in a stochastic multi-agent model of a financial market. Nature ,397(6719), 498-500. Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete 64 information. Journal of Finance, 42(3), 483–510. Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3(1), 1-6. Salisu, A. A., Ogbonna, A. E., & Adediran, I. (2021). Stock‐induced Google trends and the predictability of sectoral stock returns. Journal of Forecasting, 40(2), 327-345. Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal, 27, 1-18. Tumminello, M., Lillo, F., & Mantegna, R. N. (2010). Correlation, hierarchies, and networks in financial markets. Journal of Economic Behavior & Organization, 75(1), 40-58. Vlastakis, N., & Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance, 36(6), 1808-1821. Wanidwaranan, P., & Padungsaksawasdi, C. (2022). Unintentional herd behavior via the Google search volume index in international equity markets. Journal of International Financial Markets, Institutions and Money, 77, 101503. Xu, Q., Bo, Z., Jiang, C., & Liu, Y. (2019). Does Google search index really help predicting stock market volatility? Evidence from a modified mixed data sampling model on volatility. Knowledge-Based Systems, 166, 170-185. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信