系統識別號 | U0002-1107201923411000 |
---|---|
DOI | 10.6846/TKU.2019.00265 |
論文名稱(中文) | 以自我效能理論探討智慧型手機通訊軟體使用成癮-以通訊軟體LINE為例 |
論文名稱(英文) | Using Self-efficacy Theory to Explore Smartphone Addiction of Messaging Application: The LINE case |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊管理學系碩士在職專班 |
系所名稱(英文) | On-the-Job Graduate Program in Advanced Information Management |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 107 |
學期 | 2 |
出版年 | 108 |
研究生(中文) | 王毅中 |
研究生(英文) | Yi-Zhong Wang |
學號 | 706630323 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2018-06-01 |
論文頁數 | 57頁 |
口試委員 |
指導教授
-
吳錦波(jpwu@mail.tku.edu.tw)
委員 - 吳錦波(jpwu@mail.tku.edu.tw) 委員 - 李鴻璋(hclee@mail.tku.edu.tw) 委員 - 黃旭立(slhuang@gm.ntpu.edu.tw) |
關鍵字(中) |
LINE 成癮 自我效能 焦慮 手機黏著度 |
關鍵字(英) |
LINE Addiction self-efficacy Anxiety Adherence rate of using mobile phone |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
從2011年6月,LINE在手機應用程式平台上發布,此通訊軟體讓使用者以更能縮短人與人之間溝通的距離,但也因此減少人與人之間的近距離互動。從LINE一開始定位為通訊軟體後,並一直持續更新並增加更多的服務內容,進而增加使用者的使用意圖。 本研究透過問卷的形式來蒐集資料,問卷對象為LINE使用人員,加入了自我效能理論模式裡的人際自我效能、情感自我效能、LINE自我效能來探討對於使用LINE並造成成癮的影響,並加入調節變數焦慮以及手機黏著度來探討使用LINE造成成癮的行為。 本研究結論成果顯示「自我效能」確實對使用者使用LINE造成成癮有正向影響,但影響使用者最大因素來自於「焦慮」及「手機黏著度」。整體來說「自我效能」調節變數「焦慮」及「手機黏著度」確實為讓使用者更影響使用LINE造成成癮的因素。本研究貢獻在於讓使用者了解自我效能造成成癮的影響因素的理解並作為未來研究方向的基礎。 |
英文摘要 |
Since Line launched on the mobile application platform in June 2011, LINE has enabled users to more closely communicate with each other, but also to interact less closely with each other. At first LINE was initially positioned as a communication software, it has been continuously updated and added more service contents, and increasing users' usage intentions. The data of the study is collected through the questionnaire, questionnaire object is focused on the LINE personnel, added the self-efficacy theory model of interpersonal self-efficacy, emotional self-efficacy, LINE self-efficacy to explore for using LINE and cause the effects of addiction, and added regulatory variate anxiety and adherence rate of using mobile phone to explore the addiction of using LINE. The results of this study shows that "self-efficacy" does have a positive effect on the addiction of LINE users, but the most influential factors are "anxiety" and " adherence rate of using mobile phone ". Overall, self-efficacy, regulatory variate anxiety and adherence rate of using mobile phone were found to cause the addictive factors for LINE users. The contribution of this study is to provide users with an understanding of the factors that self-efficacy can cause the addiction of the Line users and to be served as a basis for future research. |
第三語言摘要 | |
論文目次 |
目 次 IV 表目錄 V 圖目錄 VI 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究問題及目的 3 第貳章 理論發展與假說 4 第一節 智慧型手機 4 第二節 智慧型手機成癮 6 第三節 通訊軟體的起源及發展現況 8 第四節 通訊軟體-LINE簡介 9 第五節 使用行為之理論 11 第參章 研究方法 19 第一節 研究架構 19 第二節 研究變數操作型定義與衡量題項 20 第三節 研究設計 28 第四節 資料分析方法 29 第肆章 研究結果與分析 31 第一節 樣本描述性統計分析 31 第二節 問卷量表信度與效度檢驗 37 第三節 假說與理論模型之驗證 41 第伍章 結論與建議 44 第一節 研究結論 44 第二節 理論意涵 46 第三節 實務意涵 46 第四節 研究限制 46 第五節 研究貢獻 47 第六節 研究建議與未來方向 47 參考文獻 49 附錄A:問卷 54 表目錄 表3-1 自我效能衡量題項參考 21 表3-2 情感自我效能衡量題項參考 22 表3-3 人際自我效能衡量題項參考 23 表3-4 LINE自我效能衡量題項參考 24 表3-5 手機黏著度衡量題項參考 25 表3-6 焦慮衡量題項參考 26 表3-7 LINE成癮衡量題項參考 27 表4-1 基本資料分析 32 表4-1 基本資料分析(續) 33 表4-1 基本資料分析(續) 34 表4-2 因素負荷量未達檢驗標準之題項 37 表4-3 本研究信效度檢定表 38 表4-4 本研究中變數的因素分析 39 表4-4 本研究中變數的因素分析(續) 40 表4-5 路徑係數分析結果 42 表4-6 8組假說檢定結果 43 圖目錄 圖3-1 本研究之研究架構圖 19 圖4-1 研究模型驗證結果 41 |
參考文獻 |
LINE在台灣超級夯 用戶數說出來嚇死人(2018)。TVBS新聞網。Retrieved from https://news.tvbs.com.tw/travel/981849 台灣真的在行動時代落後嗎?2017上半年台灣行動網際網路報告(2017)。新網路科技網。Retrieved from https://www.smartm.com.tw/article/33373436cea3 凃郁忠.(2012). 探討影響消費者下載行動應用軟體意願之研究.(碩士), 國立高雄師範大學資訊教育研究所. 徐鵬翔.(2012). 智慧型手機使用滿意度與品牌忠誠度之研究.(碩士), 國立中山大學資訊管理學系. 張立人.(2013).孩子手機成「癮」 半夜躲被窩瘋玩。聯合新聞網。Retrieved from http://mag.udn.com/mag/life/storypage.jsp?f_ART_ID=477985 國家發展委員會.(2018). 107年持有手機民眾數位機會調查報告.委 託聯合行銷研究股份有限公司之報告. 賴宛琳.(2012).App「LINE」爆紅崛起!看雜誌。第 116 期,2013 年 12 月 20 日。Retrieved from http://www.watchinese.com/article/2012/4402 韓登亮、齊志斐.(2005). 大學生手機成瘾症的心理學探析. 當代青年 研究;2005年12 期. Ahmet Naci Çoklar, Yusuf Levent Şahin, (2011). Technostress Levels of Social Network Users Based on ICTs in Turkey, European Journal of Social Sciences Volume 23, Number 2. AllAboutCounseling.com (2013). Nomophobia. llAboutCounseling.com. Retrieved November 12, 2013 form the World Wide Web: http://www.allaboutcounseling.com/library/nomophobia/ Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H.Freeman and Company. Bandura, A., Reese, L., & Adams, N. E. (1982). Microanalysis of action and fear arousal as a function of differential levels of perceived self-efficacy. Journal of Personality and Social Psychology, 43, 5– 21. Bandura, Albert. (1986). Social foundations of thought and action: asocial cognitive theory. New Jersey: Prentice- Hall. Brod, C. (1984). Technostress: The human cost of the computer revolution.Reading, MA: Addison-Wesley. Beverley A. Kirk, Nicola S. Schutte, Donald W. Hine.(2008) Development and preliminary validation of an emotional self-efficacy scale, Personality and Individual Differences 45 (2008) 432–436 Busko, M. (2008). Anxiety Linked With Increased Cell-Phone Dependence, Abuse. Medscape, Retrieved November 12, 2013, form the World Wide Web: http://www.medscape.com/viewarticle/571204 Charles, S. T., Piazza, J. R., Mogle, J., Sliwinski, M. J., & Alemida, D. M. (2013).The wear and tear of daily stressors on mental health. Psychological Science 24(5), 733-741. Chen, Y. -F. (2006). Social phenomena of mobile phone use: An exploratory study in Taiwanese college students. Journal of Cyber Culture and Information Society, 11, 219-244. Cheung, S. K., & Sun, S. Y. K. (2000). Effect of self-efficacy conditions of mutual-aidorganization members. Social Behavior and Personality : An international journal, 28(5), 413–422. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(1), 189–211. Davis, R. A. (2001). A cognitive-behavioral model of pathological Internet use.Computers in Human Behavior, 17(2), 187–195. Dahui, L., Glenn, J. B., & James, C. W. (2006). Why Do Internet Users Stick with a Specific Web Site? A Relationship Perspective. International Journal of Electronic Commerce, 10(4), 105. Ellison, N.B., Steinfield, C., Lampe, C. (2007). The Benefits of Facebook Friends:Social Capital and College Students’ Use of Online Social Network Sites. Journal of Computer-Mediated Communication (12:4), pp. 1143-1168. Ferris, G. R., Treadway, D. C., Perrewe´, P. L., Brouer, R. L., Douglas, C., & Lux, S. (2007). Political skill in organizations. Journal of Management, 33, 290–320. Fan, C., & Mak, A. S. (1998). Measuring social self-efficacy in a culturally diverse student population. Social Behaviors and Personality: An International Journal,26(2), 131–144. Galanaki, E. P., & Kalantzi-Azizi, A. (1999). Loneliness and social dissatisfaction:Itsrelation with children’s self-efficacy for peer interaction. Child Study Journal,29, 1–22. Gregory, Christina, 1996. “Internet Addiction Disorder: Signs, Symptoms, and Treatments,” Psycom,Montclair: Vertical health, LLC., http://www.psycom.net/iadcriteria.html. Han, J. and Hur, G. (2004). Construction and validation of mobile phone Addiction scale. Korean Journal of Journalism and Communication Studies, Vol. 48,pp.138–165. Harper, S. (2000). Managing Technostress in UK Libraries: A Realistic Guide. Journal of Ariadne. Available at http: //www.ariadne.ac.uk/issue25/technostr Accessed Jenuary 18, 2010. Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the relationship between psychological characteristics, smartphone addiction and use of mobile phones by Taiwanese female university students. Computer in Human Behavior, 28(6), 2152–2159. Hyoungkoo Khang, Hyung-Jin Woo, Jung Kyu Kim, (2012). Self as an antecedent of mobile phone addiction. Int. J. Mobile Communications, Vol. 10, No. 1, 2012 Hatterer, L. J. (1994), Addictive Process, Encyclopedia of Psychology, New York: John Wiley and Sons. Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the Relationship between psychological characteristics, smartphone addiction and use of mobile phones by Taiwanese female university students. Computer in Human Behavior, 28(6), 2152–2159. Huang, Z., Qian, M. Y., & Yi, C. L. (2006). Correlated factors comparison: The trends of computer game addiction and internet relationship addition. Chinese Journal of Clinical Psychology, 14(3), 244–247. Ishii, K., (2006). Implications of Mobility: The Uses of Personal Communication Media in Everyday Life. Journal of Communication 56(2), 346-365. 2006 Judy Chuan-Chuan Lin (2007.12).”Online stickiness: its antecedents and Effect on purchasing intention”. Accessed on 23 August 2012,page 507-516. Jenaro, C., Flores, N., Gomez-Vela, M., Gonzalez-Gil, F. and Caballo, C. (2007).Problematic internet and cell-phone use: Psychological, behavioral, and health correlates. Addiction Research and Theory, Vol. 15, pp.309–320. Kim,H.,Kim,G.J.,Park,H.W.,& Rice,R.E.(2007),Configurationsofrela tionships in different media: FtF, email, instant messenger, mobile phone,and SMS.Journal of Computer-Mediated Communication,12(4),1183-1207. Kim, J. and Haridakis, P.M. (2009). The role of internet user characteristics and motives in explaining three dimensions of internet addiction. Journal of Computer-Mediated Communication, Vol. 14, pp.988–1015. Kwon et. al. 2013. “Development and Validation of A Smartphone Addiction Scale, SAS”, Plos One, 8. San Francisco: Public Library of Science. King, A. L. S., Valenca, A. M., Silva, A. C. O., Baczynski, T., Carvalho, M. R., & Nardi, A. E. (2013). Nomophobia: Dependency on virtual environments or social phobia? Computers in Human Behavior, 29(1), 140-144. Lou, H., Luo, W., and Strong, D. (2000), “Perceived Critical Mass Effect on Groupware Acceptance,” European Journal of Information Systems, Vol. 9, pp. 91-103.27. McKinney, Leung et al.(2000), Who are the mobile phone have-nots? Influences and consequences.New Media & Society, 1(2):209-226. Larson, L. M., & Daniels, J. A. (1998). Review of the counselling self-efficacy literature. The Counseling Psychologist, 26, 179–218. Lin YH, Chang LR, Lee YH, Tseng HW, Kuo1 TBJ, Chen SH (2014). Development and Validation of the Smartphone Addiction Inventory (SPAI).PLoS ONE. 2014; 9(6): e98312.(SCI) Lin, H.-F. (2007). Predicting consumer intentions to shop online: An empirical test of competing theories. [doi: DOI: 10.1016/j.elerap.2007.02.002]. Electronic Commerce Research and Applications, 6(4), 433-442. Lin, J. C.-C., & Lu, H. (2000). Towards an Understanding of the Behavioral Intention to Use a Web Site. International Journal of Information Management, 20(3),197-208. Liu, H. (2007). Social network profiles as taste performances. Journal of Computer-Mediated Communication, 13(1). Lapointe, L., Boudreau-Pinsonneault, C. & Vaghefi, I. (2013, January). Is smartphone usage truly smart? A qualitative investigation of IT addictive behaviors. Paper presented at 2013 46th Hawaii International Conference on System Sciences. Hawaii, USA. Lee, C.C., Hsieh, M.C., (2011). The Influence of Mobile Self-Efficacy on Attitude Towards. Mobile Advertising, in, IEEE, 2009, pp. 1231-1236 Muris, P., Schmidt, H., Lambrichs, R., & Meesters, C. (2001). Protective and vulnerability factors of depression in normal adolescents. Behavior Research and Therapy, 39(5), 555–565. Meschtscherjakov, A. (2009). Mobile Attachment - Emotional Attachment Towards Mobile Devices and Services. MobileHCI’09, September 15 - 18, 2009, Bonn,Germany. Petrides, K. V., & Furnham, A. (2003). Trait emotional intelligence: Behavioral validation in two studies of emotion recognition and reactivity to mood induction. European Journal of Personality, 17, 39–57. Petrides, K. V., Sangareasu, Y., Furnham, A., & Fredrickson, N. (2006). Trait emotional intelligence and children’s peer relations at school. Social Development,15, 537–547. Richelle L. Oakley, Prashant C. Palvia. (2012). A Study of the Impact of Mobile Self-Efficacy and Emotional Attachment on Mobile Device Infusion. Proceedings of the Eighteenth Americas Conference on Information Systems, Seattle,Washington, August 9-12, 2012 Sherer, M. & Maddux, J.E. (1982). The self-efficacy scale: Construction and validation,Psychological Reports, 51, 663-671. Shao-I. Chiu,(2014). The relationship between life stress and smartphone addiction on taiwanese university student: A mediation model of learning self-Efficacy and social self-Efficacy. Computers in Human Behavior 34 (2014) 49–57 Tony Cheng-Kui Huang, Chuang-Chun Liu, Dong-Cheng Chang, (2012). an empirical investigation of factors influencing the adoption of data mining tools.International Journal of Information Management 32 (2012) 257– 270 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3),425–478. Von Hippel. E. and Thomke, S. (2002),Customers as Innovators: A New Way to Create Value. Harvard Business Review, Vol.80 (4), pp.74-81 Young, K. S. & Rogers, R. C. (1998). The Relationship Between Depression and Internet Addiction. CyberPsychology & Behavior, 1, 25-28. Zhang, J. X., & Schwarzer, R. (1995). Measuring optimistic self-beliefs: a Chinese adaptation of the General Self-Efficacy Scale. Psychologia: An International Journal of Psychology in the Orient, 38 (3), 174-181. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信