| 系統識別號 | U0002-1106201800152700 |
|---|---|
| DOI | 10.6846/TKU.2018.00300 |
| 論文名稱(中文) | 捕食與被捕食模型的行進波 |
| 論文名稱(英文) | Traveling wave solutions for a diffusive predator-prey model |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 數學學系博士班 |
| 系所名稱(英文) | Department of Mathematics |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 106 |
| 學期 | 2 |
| 出版年 | 107 |
| 研究生(中文) | 姚志鴻 |
| 研究生(英文) | Chih-Hong Yao |
| 學號 | 801190025 |
| 學位類別 | 博士 |
| 語言別 | 英文 |
| 第二語言別 | |
| 口試日期 | 2018-06-06 |
| 論文頁數 | 46頁 |
| 口試委員 |
指導教授
-
郭忠勝
委員 - 王振男 委員 - 陳俊全 委員 - 謝世峰 委員 - 洪盟凱 |
| 關鍵字(中) |
捕食者–被捕食者模型 Lokta-Volterra類型 行進波解 最小速度 |
| 關鍵字(英) |
Predator-prey model Lotka-Volterra type Traveling wave solution Minimal speed |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
我們研究了Lotka-Volterra類型功能反應的擴散捕食者 – 被捕食者模型的行進波解,其中兩個物種都服從羅吉斯成長,使得捕食者的攜帶能力與獵物成比例。 我們研究了連續型和離散型的行進波解。 我們的目標是看看兩個物種是否能夠最終生存下去,如果一個外來入侵的捕食者引入現有獵物的棲息地。 應用Schauder的不動點理論,借助適當的上下解,證明了該模型行進波解的存在性。 通過推導行進波的不存在性,我們也確定了該模型行進波的最小速度。 |
| 英文摘要 |
We study the traveling wave solutions of a diffusive predator-prey model of Lotka-Volterra type functional response in which both species obey the logistic growth such that the carrying capacity of the predator is proportional to the prey. Both continuous and discrete diffusion are addressed. Our aim is to see whether both species can survive eventually, if an alien invading predator is introducing to the habitat of an existing prey. Applying Schauder's fixed point theory with the help of suitable upper and lower solutions, the existence of traveling wave solutions for this model is proven. By deriving the non-existence of traveling waves, we also determine the minimal speed of traveling waves for this model. |
| 第三語言摘要 | |
| 論文目次 |
Contents Chapter 1 Introduction 1 1.1 Traveling wave solutions for a Lotka-Volterra type diffusive predator-prey model 1 1.2 Traveling wave solutions for a lattice dynamical system arising in a predator-prey model 3 Chapter 2 Traveling wave solutions for a Lotka-Volterra type diffusive predator-prey model 5 2.1 Introduction 5 2.2 Preliminaries 7 2.3 Upper and lower solutions of (2.1.2) 19 2.4 Existence of traveling wave solutions for c>=c* 26 2.5 Determination of the minimal speed 28 Chapter 3 Traveling wave solutions for a lattice dynamical system arising in a predator-prey model 30 3.1 Introduction 30 3.2 Preliminaries 32 3.3 Upper and lower solutions of (3.1.2) 34 3.4 Existence of traveling wave solutions for c>=c_* 41 3.5 Determination of the minimal speed 43 Bibliography 45 |
| 參考文獻 |
Bibliography [1] D.G. Aronson, H.F. Weinberger, Nonlinear di_usion in population genetics, combustion, and nerve pulse propagation, in: J.A.Goldstein(Ed.), Partial Di_erential Equations and Related Topics, in: Lecture Notes in Math., vol. 446, Springer, Berlin, 1975, 5-49. [2] X. Chen, J.-S. Guo, Uniqueness and existence of traveling waves for discretequasilinear monostable dynamics, Math. Ann. 326 (2003), 123-146. [3] Y.Y. Chen, J.-S. Guo, C.H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl. 445 (2017), 213-239. [4] X. Chen, S.-C. Fu, J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal. 38 (2006), 233-258. [5] F. Courchamp, M. Langlais, G. Sugihara, Controls of rabbits to protect birds from cat predation, Biological Conservations 89 (1999), 219-225. [6] F. Courchamp, G. Sugihara, Modelling the biological control of an alien predator to protect island species from extinction, Ecological Applications 9 (1999), 112-123. [7] Y. Du, S.-B. Hsu, A di_usive predator-prey model in heterogeneous environment, J. Differential Equations 203 (2004), 331-364. [8] A. Ducrot, J.-S. Guo, Quenching behaviour for a singular predator-prey model, Nonlinearity 25 (2012), 2059-2073. [9] A. Ducrot, M. Langlais, A singular reaction-di_usion system modelling predator-prey interactions: invasion and co-extinction waves, J. Di_erential Equations 253 (2012), 502-532. [10] P.C. Fife, Mathematical Aspects of Reacting and Di_using Systems, Springer-Verlag, Berlin, 1979. [11] S. Gaucel, M. Langlais, Some remarks on a singular reaction-di_usion system arising in predator-preys modelling, Disc. Cont. Dyn. Systems, Ser. B 8 (2007), 61-72. [12] J.-S. Guo, C.-H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Di_erential Equations 252 (2012), 4357-4391. [13] J. Hainzl, Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal. 23 (1992), 150-180. [14] S.-B. Hsu, T.-W. Hwang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math. 55 (1995), 763-783. [15] S.-B. Hsu, T.-W. Hwang, Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type, Canad. Appl. Math. Quart. 6 (1998), 91-117. [16] Y.L. Huang, G. Lin, Traveling wave solutions in a di_usive system with two preys and one predator, J. Math. Anal. Appl. 418 (2014), 163-184. [17] J. Huang, G. Lu, S. Ruan, Traveling wave solutions in delayed lattice di_erential equations with partial monotonicity, Nonl. Anal. TMA 60 (2005), 1331-1350. [18] J. Huang, X. Zou, Existence of traveling wave fronts of delayed reaction-di_usion systems without monotonicity, Disc. Cont. Dyn. Systems 9 (2003), 925-936. [19] W.T. Li, G. Lin, S. Ruan, Existence of traveling wave solutions in delayed reaction-di_usion systems with applications to di_usion-competition systems, Nonlinearity 19 (2006), 1253-1273. [20] G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal. 96 (2014), 47-58. [21] G. Lin, W.T. Li, Traveling waves in delayed lattice dynamical systems with competition interactions, Nonl. Anal. RWA 11 (2010), 3666-3679. [22] G. Lin, W.T. Li, M. Ma, Traveling wave solutions in delayed reaction di_usion systems with applications to multi-species models, Disc. Cont. Dyn. Systems, Ser. B 13 (2010), 393-414. [23] G. Lin, S. Ruan, Traveling wave solutions for delayed reaction-di_usion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dyn. Di_. Equat. 26 (2014), 583-605. [24] S. Ma, Traveling wavefronts for delayed reaction-di_usion systems via a _xed point theorem, J. Differential Equations 171 (2001), 294-314. [25] J.D. Murray, Mathematical Biology, Springer, Berlin, 1993. [26] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University Press, Cambridge, 1991. [27] B. Shorrocks, I.R. Swingland, Living in a Patch Environment, Oxford Univ. Press, New York, 1990. [28] Q. Ye, Z. Li, M. Wang, Y. Wu, Introduction to Reaction-Di_usion Equations, Science Press, Beijing, 2011. [29] E. Zeilder, Nonlinear Functional Analysis and its Applications: I, Fixed-Point Theorems, Springer,New York, 1986. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信