§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0907202513000700
DOI 10.6846/TKU_Electronic Theses & Dissertations Service202500271
論文名稱(中文) 基於LoRa網狀網路的登山安全監控系統
論文名稱(英文) Mountaineering Safety Monitoring System Based on LoRa Mesh Network
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 113
學期 2
出版年 114
研究生(中文) 高煒淳
研究生(英文) Wei-Chun Kao
學號 612410174
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2025-07-08
論文頁數 62頁
口試委員 指導教授 - 林其誼(chiyilin@mail.tku.edu.tw)
口試委員 - 林振緯(jwlin@csie.fju.edu.tw)
口試委員 - 林昌鴻(chlin@mail.ntust.edu.tw)
關鍵字(中) 物聯網
LoRa
網狀網路
全球定位系統
九軸感測器
MongoDB Atlas
登山活動安全
關鍵字(英) Internet of Things
LoRa
Mesh network
GPS
9-axis sensor
MongoDB Atlas
Mountaineering safety
第三語言關鍵字
學科別分類
中文摘要
隨著登山活動的普及,如何保障登山者的安全並有效即時監控其位置及狀態已成為重要議題。然而,山區地形複雜且通訊基礎設施匱乏,傳統定位與感測系統在通訊範圍、可靠性及耗電量上存在諸多限制,導致緊急情況發生時救援效率不彰。針對此問題,本研究提出並實現一套基於HTIT WB32開發板及LoRa網狀(Mesh)網路架構的登山安全監控系統。
本系統藉由LoRa模組的遠距通訊特性,搭配網狀網路,有效延伸通訊覆蓋範圍並提升訊息傳遞的穩定性和可靠性,成功解決山區無線訊號不足之問題。此外,系統整合了GPS模組與MPU-9250慣性量測單元,能夠精確偵測登山者的即時位置、加速度與角速度數據,以實現即時定位與跌倒偵測功能。透過Wi-Fi與HTTP協議,本系統將所有監測資料以JSON格式即時上傳至MongoDB Atlas雲端資料庫,實現了遠端監控、資料儲存與分析。
本研究的主要貢獻包括:(1) 設計並實現一個低功耗且高可靠性的LoRa網狀網路通訊登山安全系統;(2) 整合GPS與MPU-9250感測器,達成精確定位、跌倒檢測及即時運動狀態分析;(3) 引入即時緊急求救機制,透過按鈕或跌倒偵測快速觸發緊急求救訊息,並於接收端使用蜂鳴器即時警示;(4) 使用OLED顯示器提供即時的系統狀態、加速度與角速度數據,以及GPS座標等資訊顯示功能。透過上述技術整合,本研究建立了一個具有實務價值的端到端登山安全監控物聯網平台,能有效提高登山者的安全性,並在多節點多跳通訊、緊急狀態處理及遠端監控管理等領域具備高度應用潛力。
英文摘要
With the increasing popularity of mountain climbing, ensuring climbers' safety and effectively monitoring their real-time location and status have become critical issues. However, mountainous terrains are complex, and communication infrastructure is often inadequate, making traditional positioning and sensing systems limited in communication range, reliability, and power consumption. These limitations significantly hinder rescue efficiency in emergencies. To address these issues, this study proposes and implements a mountain safety monitoring system based on the HTIT WB32 development board and LoRa Mesh network architecture.
Leveraging the long-distance communication capabilities of LoRa modules combined with a mesh network, the system effectively expands communication coverage and enhances the stability and reliability of message delivery, addressing insufficient wireless signal coverage in mountainous regions. Additionally, by integrating GPS modules and the MPU-9250 inertial measurement unit, the system accurately detects climbers' real-time locations, acceleration, and angular velocity data to enable real-time positioning and fall detection. Using Wi-Fi and HTTP protocols, all monitored data is uploaded in real-time to a MongoDB Atlas cloud database in JSON format, enabling remote monitoring, data storage, and analysis.
The primary contributions of this study include: (1) Designing and implementing a low-power, highly reliable LoRa Mesh communication system tailored for mountain safety; (2) Integrating GPS and MPU-9250 sensors to achieve precise location tracking, fall detection, and real-time motion state analysis; (3) Introducing an immediate emergency alert mechanism triggered by button presses or fall detection, with real-time alerts provided via a buzzer at the receiving end; (4) Utilizing an OLED display to provide immediate feedback on system status, acceleration and angular velocity data, and GPS coordinates. Through these technological integrations, the study develops a practical end-to-end IoT platform for mountain safety monitoring, significantly enhancing climbers' safety and demonstrating considerable application potential in multi-node multi-hop communication, emergency management, and remote monitoring.
第三語言摘要
論文目次
目錄
第一章	緒論	1
1.1	研究背景與動機	1
1.2	研究目的	2
1.3	論文架構	4
第二章	背景技術與相關研究	5
2.1	LoRa通訊技術	5
2.1.1	技術原理	6
2.1.2	長距離廣域網路(LoRaWAN)	8
2.1.3	LoRa 網狀(Mesh)網路架構	11
2.2	全球定位系統(GPS)	14
2.2.1	技術原理	14
2.2.2	衛星定位誤差來源	16
2.3	相關研究	17
第三章	系統架構及運作流程	21
3.1	相關軟硬體介紹	21
3.1.1	LoRa通訊模組	21
3.1.2	GPS模組	22
3.1.3	九軸感測器	23
3.1.4	MongoDB Atlas	25
3.2	系統架構	26
3.3	運作流程	28
3.4	資料庫設計	32
第四章	系統實作與功能展示	33
4.1	實驗環境介紹	33
4.1.1	硬體配置	34
4.1.2	實驗地點	37
4.2	LoRa 封包轉發與路由策略	38
4.2.1	LoRa 通訊模組規格與參數設定	38
4.2.2	封包結構與資料格式設計	39
4.2.3	封包防重複與中繼策略	40
4.2.4	緊急訊息處理與回應機制	42
4.3	實驗結果	44
4.3.1	使用者功能測試	44
4.3.2	中繼節點功能測試	47
4.3.3	管理中心功能測試	48
4.3.4	後端資料庫	52
4.4	問題與討論	55
4.4.1	封包傳輸遺失率、延遲時間與碰撞	55
第五章	結論與未來展望	58
5.1	結論	58
5.2	未來展望	58
參考文獻	60

圖目錄
圖 1 LoRa 通訊協定堆疊架構圖[8]	9
圖 2 LoRaWAN架構[8]	10
圖 3 衛星定位示意圖[14]	15
圖 4 HTIT-WB32 (V3)模組	21
圖 5 GY-NEO6MV2 GPS模組	23
圖 6 MPU-9250外觀	24
圖 7 系統架構圖	26
圖 8 使用者的封包傳送至管理中心的流程圖	28
圖 9 中繼節點運作流程圖	30
圖 10管理中心的封包傳送至使用者的流程圖	31
圖 11資料庫的欄位與數值範例	32
圖 12 使用者節點的硬體配置	34
圖 13 中繼節點的硬體配置	35
圖 14 管理中心節點的硬體配置	36
圖 15實驗地點	37
圖 16正常封包格式	39
圖 17 防重複封包機制	40
圖 18 緊急情境封包傳遞時序圖	43
圖 19 使用者發送正常狀況	44
圖 20 使用者發送求救訊息狀況	45
圖 21 使用者收到救援封包	46
圖 22 中繼節點OLED顯示	47
圖 23 中繼節點轉發封包	48
圖 24管理中心收到正常狀況	49
圖 25 管理中心收到GPS異常	50
圖 26管理中心收到緊急狀況	51
表目錄
表 1 LoRa、Zigbee、BLE三者比較	11
表 2 HTIT-WB32 (V3)規格	22
表 3 MPU-9250規格	24
表 4 LoRa 參數設定	39
表 5 最佳鄰居選擇演算法	41
表 6 正常封包傳輸與感測數據紀錄	52
表 7 GPS異常封包傳輸與感測數據紀錄	53
表 8 緊急與救援封包傳輸與感測數據紀錄	54

參考文獻
[1]	A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications," IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015, doi: 10.1109/comst.2015.2444095.
[2]	U. Raza, P. Kulkarni, and M. Sooriyabandara, "Low Power Wide Area Networks: An Overview," IEEE Communications Surveys & Tutorials, vol. 19, pp. 855-873, 2017, doi: 10.1109/COMST.2017.2652320.
[3]	A. Maleki, H. H. Nguyen, E. Bedeer, and R. Barton, "A Tutorial on Chirp Spread Spectrum for LoRaWAN: Basics and Key Advances," vol. 2310.10503. [Online]. Available: https://arxiv.org/abs/2310.10503
[4]	M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, "Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios," IEEE Wireless Communications, vol. 23, pp. 60-67, 2016, doi: 10.1109/MWC.2016.7721743.
[5]	M. K. Simon and M.-S. Alouini, "Probability of error for noncoherent M-ary orthogonal FSK with postdetection switched combining," IEEE Transactions on Communications, vol. 51, pp. 1456-1462, 2003, doi: 10.1109/TCOMM.2003.816968.
[6]	A. Berni and W. Gregg, "On the Utility of Chirp Modulation for Digital Signaling," IEEE Transactions on Communications, vol. 21, pp. 748-751, 1973, doi: 10.1109/TCOM.1973.1091721.
[7]	D. Saluja, R. Singh, L. K. Baghel, and S. Kumar, "Scalability Analysis of LoRa Network for SNR-Based SF Allocation Scheme," IEEE Transactions on Industrial Informatics, vol. 17, pp. 6709-6719, 2021, doi: 10.1109/TII.2020.3042833.
[8]	L. Alliance. "What is LoRaWAN®." LoRa Alliance. https://resources.lora-alliance.org/document/what-is-lorawan (accessed. June,2025)
[9]	V. Varshney, R. K. Goel, and M. A. Qadeer, "Indoor positioning system using Wi-Fi & Bluetooth Low Energy technology," in 2016 Thirteenth International Conference on Wireless and Optical Communications Networks (WOCN), 2016, pp. 1-6.
[10]	J.-S. Lee, Y.-W. Su, and C.-C. Shen, "A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi," in IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007, pp. 46-51.
[11]	F. Adelantado, X. Vilajosana, P. Tuset-Peiró, B. Martinez, J. Melià-Seguí, and T. Watteyne, "Understanding the Limits of LoRaWAN," IEEE Communications Magazine, vol. 55, pp. 34–40, 2017, doi: 10.1109/MCOM.2017.1600613.
[12]	O. Hernandez, V. Jain, S. Chakravarty, and P. Bhargava, "Position location monitoring using IEEE 802.15. 4/ZigBee technology.," 2009. [Online]. Available: http://www.freescale.com_files
_microcontrollers_doc_broachure_PositionLocationMonitoring.pdf
[13]	M. Elkhodr, S. Shahrestani, and H. Cheung, "Emerging Wireless Technologies in the Internet of Things: A Comparative Study," IEEE Internet of Things Journal, vol. 5, 2018.
[14]	吳冠昇, "基於擴展性卡爾曼濾波器之GPS定位估測," 碩士, 國立陽明交通大學, 2022. [Online]. Available: https://hdl.handle.net/11296/744edq
[15]	C.-H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa, "Multi-Hop LoRa Networks Enabled by Concurrent Transmission," IEEE Access, vol. 5, pp. 21430-21446, 2017, doi: 10.1109/access.2017.2755858.
[16]	H.-C. Lee and K.-H. Ke, "Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation," IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 9, pp. 2177-2187, 2018, doi: 10.1109/tim.2018.2814082.
[17]	R. Sanchez-Iborra, I. G. Liaño, C. Simoes, E. Couñago, and A. F. Skarmeta, "Tracking and Monitoring System Based on LoRa Technology for Lightweight Boats," Electronics, vol. 8, no. 1, 2018, doi: 10.3390/electronics8010015.
[18]	R. Berto, P. Napoletano, and M. Savi, "A LoRa-Based Mesh Network for Peer-to-Peer Long-Range Communication," Sensors (Basel), vol. 21, no. 13, Jun 24 2021, doi: 10.3390/s21134314.
[19]	J. M. Sole, R. P. Centelles, F. Freitag, and R. Meseguer, "Implementation of a LoRa Mesh Library," IEEE Access, vol. 10, pp. 113158-113171, 2022, doi: 10.1109/access.2022.3217215.
[20]	D. Rai Sharma, R. R. Raghuwanshi, T. Chandak, and D. Ramdasi, "LoRa-Based IoT System for Emergency Assistance and Safety in Mountaineering," International Journal of Safety and Security Engineering, vol. 13, no. 3, pp. 491-500, 2023, doi: 10.18280/ijsse.130311.
[21]	"HTIT-WB32C (V3) -ESP32 LoRa (WiFi LoRa 32)." https://heltec.cashier.ecpay.com.tw/product/000000000612633 (accessed. June,2025)
[22]	"多功能u-blox 6 GPS 模組." https://www.u-blox.com/en/product/neo-6-series (accessed. June,2025)
[23]	"u-blox." https://www.u-blox.com/en (accessed. June,2025)
[24]	"MPU-9250." https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/ (accessed. June,2025)
[25]	"MongoDB Atlas." https://www.mongodb.com/products/
platform/atlas-database (accessed. June,2025)
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權於全球公開
校內電子論文立即公開
校外
不同意授權予資料庫廠商
校外書目立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信