| 系統識別號 | U0002-0809202516113900 |
|---|---|
| DOI | 10.6846/tku202500771 |
| 論文名稱(中文) | 以單寧酸製備中空沸石咪唑酯骨架HZIF-8與金屬酚結構合成ZIF-8薄膜應用於脫鹽技術 |
| 論文名稱(英文) | Using Tannic Acid for Synthesis of Hollow Zeolite Imidazolate Framework HZIF-8 and Metal Phenolic Network for ZIF-8 Membrane Applied in Desalination Technology |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 水資源及環境工程學系碩士班 |
| 系所名稱(英文) | Department of Water Resources and Environmental Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 杜瑛涵 |
| 研究生(英文) | Ying-Han Du |
| 學號 | 613480044 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-07-15 |
| 論文頁數 | 100頁 |
| 口試委員 |
指導教授
-
彭晴玉(cypeng@mail.tku.edu.tw)
口試委員 - 秦靜如(cjchinkk@gmail.com) 口試委員 - 蘇鎮芳( jennfangsu@mail.cgu.edu.tw) |
| 關鍵字(中) |
電容去離子 沸石咪唑酯骨架 ZIF-8 單寧酸 聚醚碸 薄膜脫鹽 |
| 關鍵字(英) |
Capacitive Deionization(CDI) Zeolitic Imidazolate Framework(ZIF) ZIF-8 Tannic Acid Polyethersulfone (PES) membrane desalination |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
電容去離子技術(Capacitive Deionization, CDI)原理為透過成對電極間施加低電壓,使水中離子受電場驅動移動至相反電荷的電極並儲存在電雙層中,達到去除離子與淨化水質的效果。金屬有機框架(Metal Organic Framework, MOF)為一種具良好離子吸附性能的奈米多孔材料,由金屬離子和有機配位基組成,其家族之一的沸石咪唑酯骨架(Zeolitic imidazolate framework, ZIF)中ZIF-8材料,具有MOF的結構,擁有特殊的熱與化學穩定性,易於調控晶格孔隙大小及性能,可廣泛應用於不同領域。
本研究的第一部分以沸石咪唑酯骨架材料ZIF-8經高溫碳化與活化製備衍生碳材料,作為電極材料應用於CDI系統,探討碳化溫度(800°C、900°C)對其結構與電吸附性能的影響,進一步選用表現較佳之碳化溫度,於碳化前利用天然多酚化合物-單寧酸(tannic acid, TA)蝕刻形成中空HZIF-8結構,經碳化與活化以優化孔隙分布並提升效能。研究的第二部分將ZIF-8、聚醚碸(polyethersulfone, PES)與聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)結合,以金屬酚結構(Metal-Phenolic Network, MPN)製備ZIF-8_PES_PVP複合薄膜,分析薄膜表面特性及孔洞結構,結合膜通量實驗探討薄膜截留水中鹽類離子之能力。
原始ZIF-8_24hr經過800°C碳化與900°C活化後所得之ZIF-8_24hr_800c_900a,具備高比表面積2419.73 m²/g與良好比電容量(93.06 F/g),並在CDI系統中擁有穩定的平均去除效率8.44%與平均電吸附量68.65 μmol/g, ZIF-8_24hr經蝕刻後的中空HZIF-8_24hr,經碳化與活化後所製得之HZIF-8_24hr_800c_900a展現更優異之性能,具備比表面積1802.62 m²/g,比電容量於掃描速率為1 mV/s時可高達118 F/g,並於CDI系統中擁有最佳平均去除率11.54%,最佳電吸附量99.13 μmol/g,且在多循環操作下仍具良好穩定性,顯示HZIF-8_24hr_800c_900a作為電極材料可有效提升整體CDI性能與循環穩定性,為研究中最具潛力之衍生多孔碳材料。
藉由金屬酚結構(Metal-Phenolic Network, MPN)製備ZIF-8_PES_PVP複合薄膜,處理3.4 mM與34 mM NaCl溶液,擁有最高的平均鹽截留率15.41%、7.98%與最高平均鹽去除質量11592 mg、48163 mg,顯示結合ZIF-8於PES薄膜之改質能有效提升PES薄膜對鹽離子的截留能力,具備應用於水處理脫鹽之潛力。
電容去離子技術(Capacitive Deionization, CDI)原理為透過成對電極間施加低電壓,使水中離子受電場驅動移動至相反電荷的電極並儲存在電雙層中,達到去除離子與淨化水質的效果。金屬有機框架(Metal Organic Framework, MOF)為一種具良好離子吸附性能的奈米多孔材料,由金屬離子和有機配位基組成,其家族之一的沸石咪唑酯骨架(Zeolitic imidazolate framework, ZIF)中ZIF-8材料,具有MOF的結構,擁有特殊的熱與化學穩定性,易於調控晶格孔隙大小及性能,可廣泛應用於不同領域。
本研究的第一部分以沸石咪唑酯骨架材料ZIF-8經高溫碳化與活化製備衍生碳材料,作為電極材料應用於CDI系統,探討碳化溫度(800°C、900°C)對其結構與電吸附性能的影響,進一步選用表現較佳之碳化溫度,於碳化前利用天然多酚化合物-單寧酸(tannic acid, TA)蝕刻形成中空HZIF-8結構,經碳化與活化以優化孔隙分布並提升效能。研究的第二部分將ZIF-8、聚醚碸(polyethersulfone, PES)與聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)結合,以金屬酚結構(Metal-Phenolic Network, MPN)製備ZIF-8_PES_PVP複合薄膜,分析薄膜表面特性及孔洞結構,結合膜通量實驗探討薄膜截留水中鹽類離子之能力。
原始ZIF-8_24hr經過800°C碳化與900°C活化後所得之ZIF-8_24hr_800c_900a,具備高比表面積2419.73 m²/g與良好比電容量(93.06 F/g),並在CDI系統中擁有穩定的平均去除效率8.44%與平均電吸附量68.65 μmol/g, ZIF-8_24hr經蝕刻後的中空HZIF-8_24hr,經碳化與活化後所製得之HZIF-8_24hr_800c_900a展現更優異之性能,具備比表面積1802.62 m²/g,比電容量於掃描速率為1 mV/s時可高達118 F/g,並於CDI系統中擁有最佳平均去除率11.54%,最佳電吸附量99.13 μmol/g,且在多循環操作下仍具良好穩定性,顯示HZIF-8_24hr_800c_900a作為電極材料可有效提升整體CDI性能與循環穩定性,為研究中最具潛力之衍生多孔碳材料。
藉由金屬酚結構(Metal-Phenolic Network, MPN)製備ZIF-8_PES_PVP複合薄膜,處理3.4 mM與34 mM NaCl溶液,擁有最高的平均鹽截留率15.41%、7.98%與最高平均鹽去除質量11592 mg、48163 mg,顯示結合ZIF-8於PES薄膜之改質能有效提升PES薄膜對鹽離子的截留能力,具備應用於水處理脫鹽之潛力。
|
| 英文摘要 |
The principle of Capacitive Deionization (CDI) is based on applying a low voltage between a pair of electrodes, driving ions in water to migrate under the electric field toward oppositely charged electrodes, where they are stored in the electrical double layer (EDL), thereby removing ions and purifying the water. Metal-Organic Frameworks (MOFs) are a class of nanostructured porous materials with excellent ion adsorption properties, composed of metal ions and organic linkers. One subclass of MOFs, Zeolitic Imidazolate Frameworks (ZIFs), includes the ZIF-8 material, which possesses the typical MOF structure with unique thermal and chemical stability. Its tunable lattice pore size and functionality make it widely applicable in various fields. In the first part of this study, the ZIF-8 material was subjected to high-temperature carbonization and activation to prepare derived carbon materials as electrode materials for CDI systems. The effects of carbonization temperatures (800°C and 900°C) on the structure and electro-adsorption performance were investigated. Based on the optimal carbonization temperature, tannic acid (TA), a natural polyphenolic compound, was used to etch the ZIF-8 to form a hollow HZIF-8 structure before carbonization. This aimed to optimize pore distribution and enhance performance through subsequent carbonization and activation. In the second part of the study, a ZIF-8_PES_PVP composite membrane was fabricated by combining ZIF-8 with polyethersulfone (PES) and polyvinylpyrrolidone (PVP) via a Metal-Phenolic Network (MPN). The surface characteristics and pore structure of the membrane were analyzed. Membrane flux experiments were conducted to evaluate the salt ion rejection capability of the membrane. The original ZIF-8_24hr, after carbonization at 800°C and activation at 900°C (denoted as ZIF-8_24hr_800c_900a), exhibited a high specific surface area of 2419.73 m²/g and a good specific capacitance of 93.06 F/g. In the CDI system, it achieved a stable average ion removal efficiency of 8.44% and an average electrosorption capacity of 68.65 μmol/g. After etching, the hollow HZIF-8_24hr, when carbonized and activated to form HZIF-8_24hr_800c_900a, showed even better performance. It had a specific surface area of 1802.62 m²/g, and a specific capacitance reaching 118 F/g at a scan rate of 1 mV/s. In the CDI system, it achieved the highest average removal efficiency of 11.54% and the best electrosorption capacity of 99.13 μmol/g. Moreover, it demonstrated excellent stability under multiple cycles, indicating that HZIF-8_24hr_800c_900a is an effective electrode material that significantly enhances CDI performance and cycle stability, making it the most promising porous carbon material in this study. Through the fabrication of ZIF-8_PES_PVP composite membranes via the Metal-Phenolic Network (MPN), tests using 3.4 mM and 34 mM NaCl solutions showed a maximum average salt rejection rate of 15.41% and 7.98%, respectively, and the highest average salt removal masses of 8572 mg and 48163 mg, respectively. These results demonstrate that incorporating ZIF-8 into PES membranes effectively improves the salt ion rejection capability, showing potential for desalination applications in water treatments. |
| 第三語言摘要 | |
| 論文目次 |
目錄 中文摘要 I 英文摘要 III 目錄 V List of Figure VIII List of Table XIII 第一章 緒論 1 1.1 研究源起 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 海水淡化處理技術 4 2.2 電容去離子技術 5 2.2.1 電容去離子技術原理 5 2.2.2 電雙層 (electrical double layer) 理論 7 2.2.3 電化學反應及過程 8 2.2.4 電容去離子技術之發展與應用 10 2.3 金屬有機框架(Metal-Organic Framework, MOF) 10 2.4 沸石咪唑酯骨架材料(Zeolitic Imidazolate Framework, ZIF) 12 2.5 沸石咪唑酯骨架材料-8 (Zeolitic Imidazolate Framework-8, ZIF-8) 13 2.5.1 沸石咪唑酯骨架-8材料介紹與生長原理 13 2.5.2 沸石咪唑酯骨架-8衍生碳材料 16 2.5.3 中空孔洞沸石咪唑酯骨架材料-8 (Hollow ZIF-8) 17 2.6 ZIF-8_PES_PVP薄膜 19 第三章 實驗方法與材料 21 3.1 研究架構 21 3.2 實驗設備 25 3.2.1 實驗藥品 25 3.2.2 實驗設備 26 3.3 電極材料製備 27 3.3.1 ZIF-8_24hr材料製備 27 3.3.2 ZIF-8_24hr衍生碳材料製備(碳化與活化) 28 3.3.3 Hollow ZIF-8_24hr (HZIF-8_24hr)材料製備 28 3.3.4 HZIF-8_24hr衍生碳材料製備(碳化與活化) 28 3.4 CDI電極製備 28 3.4.1 ZIF-8_24hr衍生碳電極製備-噴槍法 28 3.4.2 HZIF-8_24hr衍生碳電極製備-噴槍法 29 3.4.3 ZIF-8_24hr/ZIF-8_24hr 衍生碳材料循環伏安法電極製備 29 3.4.4 HZIF-8_24hr/HZIF-8_24hr衍生碳材料循環伏安法電極製備 29 3.5 ZIF-8_PES_PVP薄膜製作 31 3.6 實驗分析方法 32 3.6.1 X射線繞射分析(X-Ray Diffractometer, XRD) 32 3.6.2 掃描式電子顯微鏡分析(Scanning Electron Microscope, SEM ) 32 3.6.3 能量散射X射線譜(Energy Dispersive X-Ray Microanalysis, EDX ) 33 3.6.4 傅立葉變換紅外光譜儀(Fourier-transform infrared spectroscopy, FTIR) 33 3.6.5 接觸角分析 (Contact angle, CA) 34 3.6.6 水通量 (water flux) 34 3.7 計算公式 34 3.7.1 循環伏安法分析 (CV) 34 3.7.2 CDI吸脫附循環 35 3.7.3 薄膜水通量 37 第四章 結果與討論 38 4.1 ZIF-8_24hr或HZIF-8_24hr衍生碳材料應用於電容去離子系統 38 4.1.1 ZIF-8_24hr或HZIF-8_24hr衍生碳材料表面特性與孔洞結構分析 38 4.1.2 ZIF-8_24hr或HZIF-8_24hr衍生碳材料電化學特性分析 56 4.1.3 ZIF-8_24hr或HZIF-8_24hr應用於電容去離子系統 61 4.2 ZIF-8_PES_PVP薄膜應用於脫鹽技術 69 4.2.2 ZIF-8_PES_PVP薄膜水通量 80 4.2.3 ZIF-8_PES_PVP薄膜鹽截留率 90 第五章 結論與建議 96 參考文獻 98 List of Figure Figure 2.2.1.1 Electrosorption and desorption process of CDI system to removal ions from solution. 6 Figure 2.2.2.1 EDL (Porada et al., 2013) 7 Figure 2.2.3.1 Non-Faradaic and Faraday reactions. (Porada et al., 2013) 9 Figure 2.3.1 Metal organic framework synthesis of 1D, 2D and 3D networks, from metal ions and organic linkers (Kate Milburn., 2014). 11 Figure 2.4.1 The bridging angle in both ZIFs and zeolites is 145°.(Kate Milburn., 2014) 12 Figure 2.5.1.1 Proposed mechanism for the formation of ZIF-8 crystals in water. (Meipeng Jian et al., 2015) 15 Figure 2.5.3.1 Graphical description of Microporous Carbon ,Hollow Carbon and Hollow Activated Carbon with different nanoarchitectures and porosities .(Minjun Kim., 2021) 18 Figure 2.6.1 Illustration of the synthesis of ZIF-8/(TA-Zn2+)n/PES membrane with TA-Zn2+network as zinc precursor. 20 Figure 3.1.1 Schematic of research structure. 23 Figure 3.1.2 Schematic of research structure. 24 Figure 3.7.2.1 Schematic diagram of CDI. 36 Figure 4.1.1.1 XRD spectra of ZIF-8_24hr, ZIF-8_24hr_800c, ZIF-8_24hr_900c, and ZIF-8_24hr_800c_900a. 40 Figure 4.1.1.2 XRD spectra of HZIF-8_24hr, HZIF-8_24hr_800c and HZIF-8_24hr_800c_900a. 41 Figure 4.1.1.3 SEM spectra of (a) (e) ZIF-8_24hr, (b) (f) ZIF-8_24hr_800c, (c) (g) ZIF-8_24hr_900c and (d) (h) ZIF-8_24hr_800c_900a with magnification at 10 KX or 20 KX. 42 Figure 4.1.1.4 SEM spectra of (i) (l) HZIF-8_24hr, (j) (m) HZIF-8_24hr_800c, (k) (o) HZIF-8_24hr_800 c_900a with magnification at 10 KX or 20 KX. 43 Figure 4.1.1.5 FT-IR spectra of ZIF-8_24hr, ZIF- 8_24hr_800c, ZIF- 8_24hr_900c and ZIF-8_24hr_800c_900a. 50 Figure 4.1.1.6 FTIR functional groups of ZIF-8_24hr, ZIF- 8_24hr_800c, ZIF- 8_24hr_900c and ZIF-8_24hr_800c_900a. 51 Figure 4.1.1.7 FTIR functional groups of HZIF-8_24hr, HZIF- 8_24hr_800c and H ZIF-8_24hr_800c_900a. 52 Figure 4.1.1.8 FTIR functional groups of HZIF-8_24hr, HZIF- 8_24hr_800c and H ZIF-8_24hr_800c_900a. 53 Figure 4.1.1.9 Contact angles of ZIF-8 derived porous activated carbons (a) ZIF- 8_24hr_800c, (b) ZIF- 8_24hr_900c and (c) ZIF- 8_24hr_800c_900a. 54 Figure 4.1.1.10 Contact angles of HZIF-8 derived porous activated carbons (d) HZIF- 8_24hr_800c, and (e) HZIF- 8_24hr_800c_900a. 55 Figure 4.1.2.1 Cyclic voltammograms of (a) ZIF-8_24hr,(b) ZIF-8_24hr_800c,(c) ZIF-8_24hr_900c, and (d) ZIF-8_24hr_800c_900a at scan rates of 100, 50, 10, 5, and 1 mV/s. 57 Figure 4.1.2.2 Cyclic voltammograms of (e) HZIF-8_24hr, (f) HZIF-8_24hr_800c,and (g) HZIF-8_24hr_800c_900a at scan rates of 100, 50, 10, 5, and 1 mV/s. 58 Figure 4.1.2.3 Specific capacitances of ZIF-8_24hr derived porous activated carbons with various . 59 Figure 4.1.2.4 Specific capacitances of HZIF-8_24hr derived porous activated carbons with various scan rates.scan rates. 59 Figure 4.1.2.5 Specific capacitances of ZIF-8_24hr or HZIF-8_24hr derived porous activated carbons with various scan rates.scan rates. 60 Figure 4.1.3.1 Conductivity changes during the electrosorption (50 minutes) and desorption (30 minutes) process with ZIF-8_24hr_800c, ZIF-8_24hr_900c, and ZIF- 8_24hr_800c_900a electrodes applied in CDI systems. 64 Figure 4.1.3.2 Conductivity changes during the electrosorption (50 minutes) and desorption (30 minutes) process with HZIF-8_24hr_800c and HZIF-8_24hr_800c_900a electrodes applied in CDI systems. 64 Figure 4.1.3.3 Conductivity changes during the electrosorption (50 minutes) and desorption (30 minutes) process with ZIF-8_24hr or HZIF-8_24hr derived porous activated carbons electrodes applied in CDI systems. 65 Figure 4.1.3.4 The average removal efficiency (%) and average electrosorption capacity (μmole/g) with ZIF-8_24hr or HZIF-8_24hr derived porous activated carbon electrodes in four cycles of CDI system. 67 Figure 4.2.1.1 XRD spectra of PES_PVP, (TA-Zn2+)2_PES_PVP and ZIF-8_ PES_PVP. 71 Figure 4.2.1.2 SEM spectra of the top view of (a)(d) PES_PVP, (b)(e) (TA-Zn2+)2_PES_PVP, and (c)(f) ZIF-8_ PES_PVP. 72 Figure 4.2.1.3 SEM spectra of cross-sectional view of (a)(d) PES_PVP, (b)(e) (TA-Zn2+)2_PES_PVP and (c)(f) ZIF-8_ PES_PVP. 73 Figure 4.2.1.4 SEM/EDX image of (a) PES_PVP, (b) (TA-Zn2+)2_PES_PVP, and (c) ZIF-8_ PES_PVP. 74 Figure 4.2.1.5 ATR-FTIR spectra of PES_PVP, (TA-Zn2+)2_PES_PVP, and ZIF-8_ PES_PVP. 77 Figure 4.2.1.6 The comparison of FT-IR spectra of PES_PVP, (TA-Zn2+)2_PES_PVP, and ZIF-8_ PES_PVP. 78 Figure 4.2.1.7 Contact angles of ZIF-8_ PES_PVP membranes (a) PES_PVP, (b) (TA-Zn2+ )2_PES_PVP and (c) ZIF-8_ PES_PVP. 79 Figure 4.2.2.1 Water Flux in DI water for PES_PVP、(TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP. 81 Figure 4.2.2.2 Water Flux in DI water for PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP. 82 Figure 4.2.2.3 Average Water Flux in DI water for PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP. 83 Figure 4.2.2.4 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP in 3.4 mM NaCl Solution. 84 Figure 4.2.2.5 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP in 3.4 mM NaCl Solution. 85 Figure 4.2.2.6 Average Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP in 3.4 mM NaCl Solution. 86 Figure 4.2.2.7 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP in 34 mM NaCl Solution. 87 Figure 4.2.2.8 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP in 34 mM NaCl Solution. 88 Figure 4.2.2.9 Average Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP, and ZIF-8_ PES_PVP in 34 mM NaCl Solution. 89 Figure 4.2.3.1 Average salt removal (mg) and average salt rejection rate (%) of PES_PVP, (TA-Zn2+ )2_PES_PVP and ZIF-8_ PES_PVP in 3.4 mM NaCl solution with two measurements. 93 Figure 4.2.3.2 Average salt removal (mg) and average salt rejection rate (%) of PES_PVP, (TA-Zn2+ )2_PES_PVP and ZIF-8_ PES_PVP in 34 mM NaCl solution with two measurements. 95 List of Table Table 3.2.1.1 Manufactures and purity of experimental chemicals. 25 Table 3.2.1.2 Manufacturers and models of equipments. 26 Table 4.1.1.1 Elemental composition of ZIF-8_24hr, ZIF-8_24hr_800c, ZIF-8_24hr_900c, ZIF-8_24hr_800c_900a, HZIF-8_24hr, HZIF-8_24hr_800c and HZIF-8_24hr_800c_900a based on EDX analyses. 44 Table 4.1.1.2 Specific surface area and porosity analyses of ZIF-8_24hr or HZIF-8_24hr derived porous activated carbon. 47 Table 4.1.1.3 FTIR functional groups of ZIF-8, ZIF-8_800c, ZIF-8_800c_800a and ZIF-8_800c_900a. 51 Table 4.1.1.4 FTIR functional groups of HZIF-8_24hr, HZIF- 8_24hr_800c and H ZIF-8_24hr_800c_900a. 53 Table 4.1.2.1 Specific capacitance of ZIF-8_24hr or HZIF-8_24hr derived porous activated carbon with various scan rates. 60 Table 4.1.3.1 Removal efficiency (%) and electrosorption capacity (μmole/g) of with ZIF-8_24hr or HZIF-8_24hr derived porous activated carbons electrodes in the CDI system during the electrosorption (50 minutes) and desorption (30 minutes) process. 66 Table 4.1.3.2 Comparison of capacitive deionization performance of HZIF-8_24hr_800c_900a with other reported carbon electrodes. 68 Table 4.2.1.1 Elemental composition of PES_PVP, (TA-Zn2+)2_PES_PVP, and ZIF-8_ PES_PVP. 75 Table 4.2.1.2 FTIR functional groups of PES_PVP, (TA-Zn2+)2_PES_PVP, and ZIF-8_ PES_PVP. 78 Table 4.2.2.1 Water flux (LMH) in DI water for PES_PVP、(TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP. 81 Table 4.2.2.2 Water flux (LMH) in DI water for PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP. 82 Table 4.2.2.3 Average Water flux (LMH) in DI water for PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP. 83 Table 4.2.2.4 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP in 3.4 mM NaCl Solution. 84 Table 4.2.2.5 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP in 3.4 mM NaCl Solution. 85 Table 4.2.2.6 Average Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP in 3.4 mM NaCl Solution. 86 Table 4.2.2.7 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP in 34 mM NaCl Solution. 87 Table 4.2.2.8 Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP in 34 mM NaCl Solution. 88 Table 4.2.2.9 Average Water flux of PES_PVP, (TA-Zn²⁺)2_PES_PVP,and ZIF-8_ PES_PVP in 34 mM NaCl Solution 89 Table 4.2.3.1 Water flux (LMH) and permeate conductivity (mS/cm) and salt rejection rate (%) and salt removal (mg) of PES_PVP, (TA-Zn2+ )2_PES_PVP membrane and ZIF-8_ PES_PVP in 3.4 mM NaCl solution with two measurements. 92 Table 4.2.3.2 Water flux (LMH) and permeate conductivity (mS/cm) and salt rejection rate (%) and salt removal (mg) of PES_PVP membrane, (TA-Zn2+)2_PES_PVP membrane and ZIF-8_ PES_PVP membrane in 34 mM NaCl solution with two measurements. 94 |
| 參考文獻 |
Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. In Progress in Materials Science (Vol. 58, Issue 8, pp. 1388–1442).
Thiam, A., Lopez-Ruiz, J. A., Barpaga, D., & Garcia-Segura, S. (2021). The surge of metal–organic-framework (Mofs)-based electrodes as key elements in electrochemically driven processes for the environment. In Molecules (Vol. 26, Issue 18). MDPI.
Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials, 244–245, 444–456.
K. milburn. (2000). Synthesis and Characterization of ZIF-8 and ZIF-8/Polymer Composites. Materials Science, Engineering.
Meipeng jian., Bao liu., Ruiping liu., Jiuhui qu., huanting wang., & xiwang zhang. (2015). Water-Based Synthesis of Zeolitic Imidazolate Framework-8 with High Morphology Level at Room Temperature. RSC Advances.
Chen, B., Yang, Z., Zhu, Y., & Xia, Y. (2014). Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. In Journal of Materials Chemistry A (Vol. 2, Issue 40, pp. 16811–16831). Royal Society of Chemistry.
Duan, X., Liu , W., & Chang, L. (2016, May). Porous Carbon Prepared by Using ZIF-8 as Precursor for Capacitive Deionization. Journal of the Taiwan Institute of Chemical Engineers.
Kim, M., Xu, X., Xin, R., Earnshaw, J., Ashok, A., Kim, J., Park, T., Nanjundan, A. K., El-Said, W. A., Yi, J. W., Na, J., & Yamauchi, Y. (2021). KOH-Activated Hollow ZIF-8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Applied Materials and Interfaces, 13(44), 52034–52043.
Hu, M., Ju, Y., Liang, K., Suma, T., Cui, J., & Caruso, F. (2016). Void engineering in metal–organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 26(32), 5827-5834.
Al-Shaeli, M., Smith, S. J., Jiang, S., Wang, H., Zhang, K., & Ladewig, B. P. (2021). Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. Journal of Membrane Science, 635, 119339.
Xiao, Y., Zhang, W., Jiao, Y., Xu, Y., & Lin, H. (2021). Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. Journal of membrane science, 624, 119101.
Karimi, A., Khataee, A., Vatanpour, V., & Safarpour, M. (2019). High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Separation and Purification Technology, 229, 115838.
Pan, Y., Liu, Y., Zeng, G., Zhao, L., & Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical communications, 47(7), 2071-2073.
Bose, R., Ethiraj, J., Sridhar, P., Varghese, J. J., Kaisare, N. S., & Selvam, P. (2020). Adsorption of hydrogen and carbon dioxide in zeolitic imidazolate framework structure with SOD topology: Experimental and modelling studies. Adsorption, 26, 1027-1038.
Zhang, Y., Jia, Y., Li, M., & Hou, L. A. (2018). Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific reports, 8(1), 9597.
Yuan, M., Liu, T., Shi, Q., & Dong, J. (2022). Understanding the KOH activation mechanism of zeolitic imidazolate framework-derived porous carbon and their corresponding furfural/acetic acid adsorption separation performance. Chemical Engineering Journal, 428, 132016.
Nordin, N. A. H. M., Racha, S. M., Matsuura, T., Misdan, N., Sani, N. A. A., Ismail, A. F., & Mustafa, A. (2015). Facile modification of ZIF-8 mixed matrix membrane for CO 2/CH 4 separation: synthesis and preparation. Rsc Advances, 5(54), 43110-43120.
Hao, C., Zhou, D., Xu, J., Hong, S., Wei, W., Zhao, T., ... & Fang, W. (2021). One-pot synthesis of vancomycin-encapsulated ZIF-8 nanoparticles as multivalent and photocatalytic antibacterial agents for selective-killing of pathogenic gram-positive bacteria. Journal of Materials Science, 56, 9434-9444.
Lai, Y., He, J., Li, Y., Zhou, S., Yan, W., Zhou, Y., & Gao, C. (2024). Preparation of hydrophilic modified ZIF-8 and its application in the preparation of nanocomposite matrix reverse osmosis membrane with improved permeation performance. Journal of Coatings Technology and Research, 21(2), 683-692.
Pu, X., Zhao, D., Fu, C., Chen, Z., Cao, S., Wang, C., & Cao, Y. (2021). Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angewandte Chemie International Edition, 60(39), 21310-21318.
Mohamat, R., Bakar, S. A., Muqoyyanah, Mohamed, A., Kamal, S. N. E. A. M., Othman, M. H. D., ... & Astuti, B. (2022). Effect of triple-tail surfactant on the morphological properties of polyethersulfone-based membrane and its antifouling ability. Journal of Materials Science, 57(34), 16333-16351.
Salim, A., Abbas, M. A., Khan, I. A., Khan, M. Z., Javaid, F., Mushtaq, S., ... & Ahmad, N. M. (2022). Graphene oxide incorporated polyether sulfone nanocomposite antifouling ultrafiltration membranes with enhanced hydrophilicity. Materials Research Express, 9(7), 075503.
Moarefian, A., Golestani, H. A., & Bahmanpour, H. (2014). Removal of amoxicillin from wastewater by self-made Polyethersulfone membrane using nanofiltration. Journal of Environmental Health Science and Engineering, 12, 1-1
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., ... & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191.
Yu, H., Hossain, S. M., Wang, C., Choo, Y., Naidu, G., Han, D. S., & Shon, H. K. (2023). Selective lithium extraction from diluted binary solutions using metal-organic frameworks(MOF)-based membrane capacitive deionization (MCDI). Desalination, 556, 116569.
Nightingale Jr, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 63(9), 1381-1387.
|
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信