| 系統識別號 | U0002-0807202523573500 |
|---|---|
| DOI | 10.6846/tku202500546 |
| 論文名稱(中文) | 應用混合多準則決策分析評估公路運輸韌性之研究 |
| 論文名稱(英文) | A Hybrid Multi-Criteria Decision Making Model for Evaluating Highway Transportation Resilience |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 運輸管理學系運輸科學碩士班 |
| 系所名稱(英文) | Department of Transportation Management |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 陳若渝 |
| 研究生(英文) | Ruo-Yu Chen |
| 學號 | 612660026 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-06-17 |
| 論文頁數 | 153頁 |
| 口試委員 |
指導教授
-
許超澤(hsuchao@mail.tku.edu.tw)
口試委員 - 劉建浩 口試委員 - 羅懷暐 |
| 關鍵字(中) |
關鍵基礎設施 交通運輸韌性 公路運輸韌性 Z-SWARA 修正式折衷排序法 Z-CoCoSo |
| 關鍵字(英) |
Critical Infrastructure Transportation Resilience Road Resilience Z-SWARA Modified VIKOR Z-CoCoSo |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
近年來,極端氣候事件頻繁發生,對交通運輸系統的穩定性構成重大威脅。公路運輸系統為我國關鍵基礎設施重要組成之一,與其他基礎設施具有高度依存性,系統一旦中斷,將可能引發跨部門之連鎖反應。為因應氣候變遷與災害風險升高的挑戰,各國政府已逐步導入「韌性」思維,強調系統於災前預防、災時應變與災後復原之能力。然而,過往國內相關研究多聚焦於單一災害模擬,例如:颱風導致之道路中斷模擬、地震災害下之橋樑損壞評估,或路網可及性分析,於災害發生時替代路線之可行性及服務水準變化等。大多著重於災害當下之影響,較少建立涵蓋災前準備、災時穩固、災後復原等階段,並反映整體系統韌性表現之評估架構,同時,缺乏一套能處理語意模糊性與專家主觀不確定性的研究模型。因此,建立具操作性與解釋力之「公路運輸韌性評估架構」,以因應災害衝擊、指導政策推動與資源配置,有其必要性。本研究結合Z-number與SWARA方法提出Z-SWARA,以量化專家對評估準則之重要性與可靠度,並運用Modified VIKOR方法進行妥協排序,整合多構面評估結果,分析不同地區公路運輸系統之韌性表現與改善優先順序,並以Z-CoCoSo進行驗證。 研究結果指出,「災前準備性」為四大構面中最具影響力者,顯示提升人員訓練、設施維護與災前應變規劃為強化韌性之首要策略。在16項評估準則中,以「人員培訓與災前演練」、「備用的資訊管理系統」及「基礎設施維護」三者權重最高,凸顯制度建置與技術實作兼備之重要性。最後透過 Modified VIKOR 方法進行比較,發現三個直轄市的公路運輸系統在韌性表現上有明顯差異。臺北市整體表現最好,主因其自1967年即升格為直轄市,長期作為行政中樞,累積了完善的交通建設與災害應變經驗。不過因為市區開發密度高,也讓「災後可供工作區域」成為其主要弱點。相較之下,新北市與桃園市較晚升格為直轄市,在改善項目上相當類似,反映出兩地的韌性體系還在發展中。此外,三個都市皆將「基礎設施維護」列為首要改善項目,顯示提升設施穩定性是強化公路韌性的共通關鍵。 |
| 英文摘要 |
In recent years, the increasing frequency of extreme climate events has posed significant threats to the stability of transportation systems. As a critical component of national infrastructure, the highway transportation system in Taiwan is highly interdependent with other infrastructure sectors. Once disrupted, it can trigger cascading effects across multiple departments. To address the challenges posed by climate change and escalating disaster risks, governments worldwide have gradually adopted the concept of "resilience," emphasizing the system’s capabilities in pre-disaster prevention, emergency response during disasters, and post-disaster recovery. However, past domestic studies have primarily focused on simulations of individual disaster events—such as road closures due to typhoons or bridge damage under seismic conditions—or on network accessibility analysis, exploring the feasibility of alternative routes and changes in service levels during disasters. These studies largely concentrated on the immediate impact of disasters and rarely established comprehensive assessment frameworks that encompass pre-disaster preparedness, stability during disasters, and post-disaster recovery stages. Furthermore, few models have been developed to address the issues of semantic ambiguity and expert judgment uncertainty. Therefore, it is necessary to establish an operational and interpretable “Highway Transportation Resilience Assessment Framework” to respond to disaster impacts, guide policy implementation, and support resource allocation. This study proposes the Z-SWARA method by integrating Z-numbers and the SWARA approach to quantify the importance and credibility of evaluation criteria based on expert opinions. The Modified VIKOR method is then applied to perform compromise ranking, integrating multidimensional assessment results to analyze the resilience performance and improvement priorities of highway systems across different regions. The Z-CoCoSo method is further employed to verify the consistency and robustness of the evaluation results. The findings reveal that "pre-disaster preparedness" is the most influential of the four major resilience dimensions, highlighting the importance of enhancing personnel training, infrastructure maintenance, and pre-disaster planning as key strategies for strengthening resilience. Among the 16 evaluation criteria, "personnel training and pre-disaster drills," "backup information management systems," and "infrastructure maintenance" received the highest weights, underscoring the significance of combining institutional frameworks with technical measures. The Modified VIKOR analysis shows considerable differences in resilience performance among the three examined municipalities. Taipei City demonstrated the strongest overall performance, attributable to its designation as a special municipality since 1967 and its long-standing role as the administrative center, which has enabled the accumulation of robust transport infrastructure and disaster response experience. However, the city's high urban development density has made "availability of post-disaster working areas" a notable vulnerability. In contrast, New Taipei City and Taoyuan City, having been upgraded to special municipalities more recently, share similar improvement priorities, reflecting the ongoing development of their resilience systems. Notably, all three cities identified "infrastructure maintenance" as the top improvement priority, indicating that enhancing the stability of infrastructure is a common key to improving highway resilience. |
| 第三語言摘要 | |
| 論文目次 |
目錄 目錄 I 圖目錄 IV 表目錄 V 第一章 緒論 1 1.1 研究背景與研究動機 1 1.2 研究目的 3 1.3 研究範圍與研究限制 4 1.4 研究流程 5 第二章 文獻回顧 7 2.1 關鍵基礎設施 7 2.1.1 關鍵基礎設施發展與定義 7 2.1.2 我國關鍵基礎設施發展 10 2.1.3 關鍵基礎設施相互依存性 12 2.2 我國災害防救體系 13 2.3 韌性的定義 16 2.4 交通運輸韌性定義 18 2.4.1 公路運輸韌性定義 23 2.4.2 公路運輸韌性特徵與評估構面 24 2.5 多準則決策方法 31 2.5.1 多準則決策 31 2.5.2 多準則決策方法應用於韌性評估 36 2.5.3 德爾菲法 36 2.5.4 Z-numbers 40 2.5.5 SWARA方法 41 2.5.6 Modified VIKOR方法 43 2.5.7 CoCoSo方法 45 2.6 小結 48 第三章 研究方法 51 3.1 研究架構 51 3.2 修正式德爾菲法 52 3.3 Z-numbers 53 3.4 SWARA 53 3.5 VIKOR 54 3.6 Modified VIKOR 56 3.7 Z-SWARA 57 3.8 CoCoSo 60 3.9 Z-CoCoSo 61 第四章 實證分析 65 4.1 修正式德爾菲法之準則篩選 65 4.2 Z-SWARA 73 4.3 Modified VIKOR 84 4.4 Z-CoCoSo分析 96 4.5 小結 98 第五章 結論與建議 100 5.1 結論 101 5.2 建議 103 參考文獻 104 附錄 129 附錄A 第一次修正式德爾菲法問卷 129 附錄B第二次修正式德爾菲法問卷 136 附錄C 自然災害下公路運輸韌性績效評估問卷 143 附錄D自然災害下公路運輸韌性績效評估問卷 152 圖目錄 圖 1.1研究流程圖 6 圖 2.1關鍵基礎設施相互依存層級與關係示意圖 13 圖 2.2中央災害防救體系組織架構 14 圖 2.3陸上交通事故災害防救體系示意圖 15 圖 2.4關鍵基礎設施災前至災後階段之韌性流程圖 17 圖 2.5本研究初擬公路運輸韌性評估架構 31 圖 2.6 VIKOR方法之理想解與妥協解示意圖 44 圖 3.1研究流程圖 51 圖 4.1本研究建立之公路運輸韌性評估模型 72 表目錄 表 2 1美國定義關鍵基礎設施或產業 9 表 2 2各國政府對關鍵基礎設施之定義 10 表 2 3 臺灣國家關鍵基礎設施領域分類 11 表 2 4國內外文獻常見之運輸韌性定義 18 表 2 5交通運輸系統韌性的主要特徵 20 表 2 6交通運輸系統韌性能力 23 表 2 7公路系統韌性意涵及其能力描述 24 表 2 8韌性評估構面之建立 24 表 2 9公路運輸韌性評估準則彙整表 27 表 2 10常見MCDM方法比較 34 表 2 11 修正式德爾菲法相關應用 38 表 2 12 Z-numbers相關應用 40 表 2 13 SWARA相關應用 42 表 2 14 VIKOR相關應用 45 表 2 15 CoCoSo相關應用 46 表 3 1 傳統VIKOR方法之限制與對應修正策略 56 表 3 2評估準則重要性程度語意變數 58 表 3 3可靠度語意變數 58 表 3 4 Z-numbers語意變數轉換為模糊數之規則 58 表 3 5備選方案排序所使用的語意變數 62 表 3 6排序備選方案的Z-numbers語意變數轉換為模糊數之規則 62 表 4 1修正式德爾菲問卷之專家學者背景簡介 65 表 4 2彙整文獻回顧之公路韌性準則與定義 66 表 4 3第一輪修正式德爾菲法修改後之公路運輸韌性評估準則與定義 68 表 4 4第二輪修正式德爾菲法之公路運輸韌性評估準則篩選結果 71 表 4 5 Z-SWARA問卷之專家統計資料 73 表 4 6評估準則重要性程度語意變數 74 表 4 7可靠度語意變數 74 表 4 8評估準則重要性程度及可靠度語意變數 74 表 4 9以專家一為例各評估準則之重要性比較係數值(s值)彙整表 75 表 4 10以專家一為例各評估準則之調整係數(k值)彙整表 76 表 4 11以專家一為例各評估準則之累積反比權重(q值)計算表 77 表 4 12以專家一為例各評估準則之最終正規化模糊權重(w值)彙整表 78 表 4 13各評估準則解模糊後權重彙整表 79 表 4 14各評估準則加權後權重彙整表 82 表 4 15專家群績效評估表 84 表 4 16加權正規化計算 85 表 4 17專家群方案群體效益(Sj)與最大個體遺憾(Rj) 86 表 4 18方案綜合效益排名(Qj)計算 86 表 4 19各系統改善準則項目排序 87 表 4 20首要改善類 92 表 4 21次要改善類 95 表 4 22基本改善類 96 表 4 23以專家一為例對各城市在各準則下的語意績效評估 96 表 4 24各城市方案之Z-CoCoSo綜合績效評估結果 97 表 4 25各城市方案之Z-CoCoSo評估指標與最終排序 97 |
| 參考文獻 |
行政院國土安全辦公室(2018)。國家關鍵基礎設施安全防護指導綱要。 行政院(2024年11月28日)。災害防救辦公室。行政院全球資訊網。https://www.ey.gov.tw/Page/CBC6FF9ABFD55D8D 朱惠中(2021)。美國政府對關鍵基礎設施防護的戰略思維。清流雙月刊,34,40-47。 交通部(2023)。陸上交通事故災害防救業務計畫。 吳杰穎、黃昱翔(2011)。颱洪災害脆弱度評估指標之建立:以南投縣水里鄉為例,都市與計劃,38(2),195-218。 吳俞增(2020)。應用失效模式與影響分析模型結合人為因素分析和分類系統探討國道客運之風險[碩士論文]。國立臺北科技大學工業工程與管理系。 杜双玉、洪念民(2019)。應用修正式德爾菲法及層級分析法探討臺灣旅館選址因素。觀光休閒學報,25(3),275-300。 李彥呈(2023)。建立混合多準則決策模型評估機場韌性之研究。[碩士論文﹞。淡江大學運輸管理學系。 李冠穎(2024)。結合DANP 與VIKOR 方法來探討使用者對加密貨幣交易所的評估與選擇-以台灣為例。[碩士論文﹞。國立雲林科技大學。 林俊宏、曾國雄、任維廉(2005)。利用VIKOR方法解決企業資源規劃系統評選問題。農業與經濟,(34),69-91。 林晏妃(2022)。以城市韌性反思韌性社區推動工作研究[碩士論文]。國立臺灣科技大學營建工程系。 胡大瀛、吳宥萱(2016)。災害下考量永續因素之運輸系統恢復力最佳化模型建立之研究。運輸計劃季刊,45(4),277-300。 胡喬喻(2024)。混合多準則決策模型評估企業韌性--以航空業為例。[碩士論文]。國立臺北科技大學工業工程與管理系。 陳亮全、詹士樑(2020)。災害韌性與土地規劃 特刊序。都市與計劃,47(1),1-2。 陳茹宣(2024)。以企業層級探討供應鏈韌性改善之策略優先序—運用IPA為基之修正式德菲法。﹝碩士論文﹞。國立臺中科技大學。 陳姠蓉(2021)。應用AHP及修正式德爾菲法探討消費者對新一代即時通訊軟體平台生態圈之偏好模式[碩士論文]。國立高雄科技大學。 陳貴凰、方翠禪、吳雅君(2011)。主題餐廳菜單設計評估指標建構-以修正式德菲法與層級分析法為例。運動休閒餐旅研究,6(3),1-27。 黃俊能、郭燿禎(2013)。關鍵基礎設施風險評估機制之建立-以台北車站重要交通場站為例。前瞻科技與管理,3(1),1-29。 黃俊能(2023)。國家關鍵基礎設施防護──論風險管理與韌性評估。最高檢察論壇,(2),100-127。 蔡青逸(2017)。運用修正式德菲法與層級分析法建構台灣社會企業績效評估指標。﹝碩士論文﹞。國立高雄師範大學。 鄭伯峰(2019)。應用AHP與VIKOR 建立國道客運大客車評選模式[碩士論文]。中華大學。 賴宏杰(2018)。應用修正式德菲法於商圈考核評鑑指標之建立-以臺南市商圈為例。﹝碩士論文﹞。國立屏東大學。 蕭英煜(2020)。運用「修正式德菲法」探討國軍協助災害防救制度。軍事社會科學專刊(16),111-133。 Abdullahi, M., Ahmad, T., & Ramachandran, V. (2020). A Review on Some Arithmetic Concepts of Z-Number and Its Application to Real-World Problems. International Journal of Information Technology & Decision Making, 19(04), 1091-1122. https://doi.org/10.1142/S0219622020300025 Adams, T. M., Bekkem, K. R., & Toledo-Durán, E. J. (2012). Freight Resilience Measures. Journal of Transportation Engineering, 138(11), 1403–1409. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000415 Akhlaghi, V. E., Campbell, A. M., & Demir, I. (2023). The Flood Mitigation Problem in a Road Network. arXiv preprint arXiv:2302.07983. https://doi.org/10.48550/arXiv.2302.07983 Akinlalu, A. A., Obideyi, O. I., Afolabi, D. O., Adiat, K. A.-N., & Adeola, O. J. (2024). Gold prospectivity mapping using “SWARA” model on geophysical datasets in parts of Ilesa Schist belt, Southwestern Nigeria. Results in Earth Sciences, 2, 100039. https://doi.org/10.1016/j.rines.2024.100039 Alimardani, M., Zolfani, S. H., Aghdaie, M. H., & Tamošaitienė, J. (2013). A NOVEL HYBRID SWARA AND VIKOR METHODOLOGY FOR SUPPLIER SELECTION IN AN AGILE ENVIRONMENT. Technological and Economic Development of Economy, 19(3), 533–548. https://doi.org/10.3846/20294913.2013.814606 Aliev, R. A., Babanli, M. B., & Guirimov, B. G. (2024). Z-number based neural network structured inference system. Information Sciences, 671, 120341. https://doi.org/10.1016/j.ins.2024.120341 Alinezhad, A., & Khalili, J. (2019). International Series in Operations Research & Management Science New methods and applications in multiple attribute decision making (MADM), 277, 199-203. http://www.springer.com/series/6161. Alipour, A., & Shafei, B. (2016). Seismic Resilience of Transportation Networks with Deteriorating Components. Journal of Structural Engineering, 142(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001399 Amoaning-Yankson, S., & Amekudzi-Kennedy, A. (2017). Transportation System Resilience. Transportation Research Record: Journal of the Transportation Research Board, 2604(1), 28–36. https://doi.org/10.3141/2604-04 Atangana Njock, P. G., Shen, S.-L., Zhou, A., & Lin, S.-S. (2022). A VIKOR-based approach to evaluate river contamination risks caused by wastewater treatment plant discharges. Water Research, 226, 119288. https://doi.org/10.1016/j.watres.2022.119288 Australian Government. (2018). Security of Critical Infrastructure Act 2018 (SOCI Act). Cyber and Infrastructure Security Centre. https://www.cisc.gov.au/legislation-regulation-and-compliance/soci-act-2018 Azadeh, A., Atrchin, N., Salehi, V., & Shojaei, H. (2014). Modelling and improvement of supply chain with imprecise transportation delays and resilience factors. International Journal of Logistics Research and Applications, 17(4), 269-282. https://doi.org/10.1080/13675567.2013.846308 Bağcı, B., & Kartal, M. (2024). A combined multi criteria model for aircraft selection problem in airlines. Journal of Air Transport Management, 116, 102566. https://doi.org/10.1016/j.jairtraman.2024.102566 Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2013). Resilience-based network component importance measures. Reliability Engineering & System Safety, 117, 89-97. https://doi.org/10.1016/j.ress.2013.03.012 Baroud, H., Barker, K., Ramirez‐Marquez, J. E., & Rocco, C. M. (2015). Inherent Costs and Interdependent Impacts of Infrastructure Network Resilience. Risk Analysis, 35(4), 642–662. https://doi.org/10.1111/risa.12223 Berche, B., Von Ferber, C., Holovatch, T., & Holovatch, Y. (2009). Resilience of public transport networks against attacks. The European Physical Journal B, 71, 125-137. https://doi.org/10.1140/epjb/e2009-00291-3 Bhamra, R., Dani, S., & Burnard, K. (2011). Resilience: the concept, a literature review and future directions. International Journal of Production Research, 49(18), 5375–5393. https://doi.org/10.1080/00207543.2011.563826 Blockley, D., Agarwal, J., & Godfrey, P. (2012). Infrastructure resilience for high-impact low-chance risks. Proceedings of the Institution of Civil Engineers - Civil Engineering, 165(6), 13–19. https://doi.org/10.1680/cien.11.00046 Bocchini, P., & Frangopol, D. M. (2012). Optimal Resilience- and Cost-Based Postdisaster Intervention Prioritization for Bridges along a Highway Segment. Journal of Bridge Engineering, 17(1), 117–129. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000201 Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & von Winterfeldt, D. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733-752. https://doi.org/10.1193/1.1623497 Cabinet Office. (2018). Public Summary of Sector Security and Resilience Plans. www.gov.uk/government/organisations/cabinet-office Çaloğlu Büyükselçuk, E., & Badem, E. (2024). Player selection in football by integrated SWARA-VIKOR methods under fuzzy environment. Heliyon, 10(12), e33087. https://doi.org/10.1016/j.heliyon.2024.e33087 Chan, R., & Schofer, J. L. (2016). Measuring transportation system resilience: Response of rail transit to weather disruptions. Natural Hazards Review, 17(1), 05015004. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000200 Cerema. (2020). La boussole de la résilience: repères pour la résilience territorial. Chang, C.-L. (2010). A modified VIKOR method for multiple criteria analysis. Environmental monitoring and assessment, 168, 339-344. https://doi.org/10.1007/s10661-009-1117-0 Chen, H., Cullinane, K., & Liu, N. (2017). Developing a model for measuring the resilience of a port-hinterland container transportation network. Transportation Research Part E: Logistics and Transportation Review, 97, 282-301. https://doi.org/10.1016/j.tre.2016.10.008 Chen, L., & Miller-Hooks, E. (2012). Resilience: an indicator of recovery capability in intermodal freight transport. Transportation Science, 46(1), 109-123. https://doi.org/10.1287/trsc.1110.0376 Cheng, R., Fan, J., & Wu, M. (2023). A dynamic multi-attribute group decision-making method with R-numbers based on MEREC and CoCoSo method. Complex & Intelligent Systems, 9(6), 6393-6426. https://doi.org/10.1007/s40747-023-01032-4 Christopher, M., & Peck, H. (2004). Building the Resilient Supply Chain. The International Journal of Logistics Management, 15(2), 1–14. https://doi.org/10.1108/09574090410700275 Colicchia, C., Dallari, F., & Melacini, M. (2010). Increasing supply chain resilience in a global sourcing context. Production Planning & Control, 21(7), 680–694. https://doi.org/10.1080/09537280903551969 Cox, A., Prager, F., & Rose, A. (2011). Transportation security and the role of resilience: A foundation for operational metrics. Transport Policy, 18(2), 307–317. https://doi.org/10.1016/j.tranpol.2010.09.004 Dalkey, N., and Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3), 458-467. https://doi.org/10.1287/mnsc.9.3.458 Deloukas, A., & Apostolopoulou, E. (2017). Static and dynamic resilience of transport infrastructure and demand: the case of the Athens metro. Transportation Research Procedia, 24, 459–466. https://doi.org/10.1016/j.trpro.2017.05.082 Department of Homeland Security. (2009). National infrastructure protection plan: Partnering to enhance protection and resiliency. U.S. Department of Homeland Security. Department of Homeland Security. (2013). National infrastructure protection plan (NIPP) 2013: Partnering for critical infrastructure security and resilience. Government Publishing Office. Divya, V., Malathi, J., Rajeswari, M., Kumar, D. S., & Mugunthan, G. (2024, July). Z-number and DEMATEL-based scheme to enhance energy-efficient workflow scheduling and virtual machine consolidation for green cloud computing. In 2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN) (pp. 1–6). IEEE. https://doi.org/10.1109/ICSTSN61422.2024.10671095 El-Maissi, A. M., Argyroudis, S. A., Kassem, M. M., Leong, L. V., & Mohamed Nazri, F. (2022). An Integrated Framework for the Quantification of Road Network Seismic Vulnerability and Accessibility to Critical Services. Sustainability, 14(19). https://doi.org/10.3390/su141912474 Elnaz, S., Sharareh, K., & Thahomina, J. N. (2020). Schedule Performance Analysis of Infrastructure Reconstruction Projects Due to Extreme Events. Proceedings of the Creative Construction E-Conference 2020, 39–48. https://doi.org/10.3311/CCC2020-053 El Rashidy, R. A. H., & Grant-Muller, S. (2019). A composite resilience index for road transport networks. Proceedings of the Institution of Civil Engineers - Transport, 172(3), 174–183. https://doi.org/10.1680/jtran.16.00139 European Union. (2008). Council Directive 2008/114/EC on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Official Journal of the European Union. https://eur-lex.europa.eu/eli/dir/2008/114/oj/eng Federal Emergency Management Agency. (2017). Pre-disaster recovery planning guide for local governments. U.S. Department of Homeland Security. Forzieri, G., Bianchi, A., Silva, F. B. e, Marin Herrera, M. A., Leblois, A., Lavalle, C., Aerts, J. C. J. H., & Feyen, L. (2018). Escalating impacts of climate extremes on critical infrastructures in Europe. Global Environmental Change, 48, 97–107. https://doi.org/10.1016/j.gloenvcha.2017.11.007 Francis, R., & Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability Engineering & System Safety, 121, 90–103. https://doi.org/10.1016/j.ress.2013.07.004 Galbusera, L., Cardarilli, M., Gómez Lara, M., & Giannopoulos, G. (2022). Game-based training in critical infrastructure protection and resilience. International Journal of Disaster Risk Reduction, 78, 103109. https://doi.org/10.1016/j.ijdrr.2022.103109 Ganin, A. A., Kitsak, M., Marchese, D., Keisler, J. M., Seager, T., & Linkov, I. (2017). Resilience and efficiency in transportation networks. Science Advances, 3(12). https://doi.org/10.1126/sciadv.1701079 Ganin, A. A., Mersky, A. C., Jin, A. S., Kitsak, M., Keisler, J. M., & Linkov, I. (2019). Resilience in Intelligent Transportation Systems (ITS). Transportation Research Part C: Emerging Technologies, 100, 318-329. https://doi.org/10.1016/j.trc.2019.01.014 Ghoushchi, S. J., Gharibi, K., Osgooei, E., Ab Rahman, M. N., & Khazaeili, M. (2021). Risk prioritization in failure mode and effects analysis with extended SWARA and MOORA methods based on Z-numbers theory. Informatica, 32(1), 41-67. https://doi.org/10.15388/20-INFOR439 Ghoushchi, S. J., & Sarvi, S. (2023). Prioritizing and Evaluating Risks of Ordering and Prescribing in the Chemotherapy Process Using an Extended SWARA and MOORA under Fuzzy Z-numbers. Journal of Operations Intelligence, 1(1), 44–66. https://doi.org/10.31181/jopi1120238 Gidaris, I., Padgett Jamie, E., Barbosa Andre, R., Chen, S., Cox, D., Webb, B., & Cerato, A. (2017). Multiple-Hazard Fragility and Restoration Models of Highway Bridges for Regional Risk and Resilience Assessment in the United States: State-of-the-Art Review. Journal of Structural Engineering, 143(3), 04016188. Greco, S., Figueira, J., & Ehrgott, M. (2016). Multiple criteria decision analysis (Vol. 37). New York: springer. Henry, D., & Emmanuel Ramirez-Marquez, J. (2012). Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering & System Safety, 99, 114-122. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001672 Hettiarachchi, S. S. L., & Weeresinghe, S. (2014). Achieving Disaster Resilience through the Sri Lankan Early Warning System: Good practises of Disaster Risk Reduction and Management. Procedia Economics and Finance, 18, 789-794. https://doi.org/10.1016/S2212-5671(14)01003-X Hillier, B., & Hanson, J. (1989). The social logic of space. Cambridge university press. Hollnagel, E., Woods, D. D., & Leveson, N. (Eds.). (2006). Resilience engineering: Concepts and precepts. Ashgate Publishing, Ltd.. Hosseini Dehshiri, S. J., & Amiri, M. (2024). Evaluation of blockchain implementation solutions in the sustainable supply chain: A novel hybrid decision approach based on Z-numbers. Expert Systems with Applications, 235. https://doi.org/10.1016/j.eswa.2023.121123 Hosseini Dehshiri, S. S., & Firoozabadi, B. (2023). A novel four-stage integrated GIS based fuzzy SWARA approach for solar site suitability with hydrogen storage system. Energy, 278, 127927. https://doi.org/10.1016/j.energy.2023.127927 Hosseini, S., Ivanov, D., & Dolgui, A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research Part E: Logistics and Transportation Review, 125, 285-307. https://doi.org/10.1016/j.tre.2019.03.001 Hsu, C. C., Kuo, Y. W., and Liou, J. J. (2023). A Hybrid Model for Evaluating the Bikeability of Urban Bicycle Systems. Axioms, 12(2), 155. https://doi.org/10.3390/axioms12020155 Hsu, C. C., & Sandford, B. A. (2007). The Delphi technique: making sense of consensus. Practical assessment, research, and evaluation, 12(1). https://doi.org/10.7275/pdz9-th90 International Transport Forum. (2016). Transport system resilience: Summary and conclusions. OECD Publishing. Ishfaq, R. (2012). Resilience through flexibility in transportation operations. International Journal of Logistics Research and Applications, 15(4), 215–229. https://doi.org/10.1080/13675567.2012.709835 Ivory, V., & Trotter, M. (2017, November). Resilience, freight mobility and governance: mapping the actors in New Zealand’s transport network. In 39th Australasian Transport Research Forum (ATRF), Auckland, New Zealand. Janić, M. (2022). Analysis and modelling of airport resilience, robustness, and vulnerability: impact of COVID-19 pandemic disease. The Aeronautical Journal, 126(1305), 1924–1953. https://doi.org/10.1017/aer.2022.25 Jenelius, E., & Mattsson, L. G. (2012). Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study. Transportation research part A: policy and practice, 46(5), 746-760. https://doi.org/10.1016/j.tra.2012.02.003 Jia, C., Zhang, C., Li, Y.-F., & Li, Q.-L. (2023). Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures. Reliability Engineering & System Safety, 231, 109023. https://doi.org/10.1016/j.ress.2022.109023 Jin, J. G., Tang, L. C., Sun, L., & Lee, D.-H. (2014). Enhancing metro network resilience via localized integration with bus services. Transportation Research Part E: Logistics and Transportation Review, 63, 17–30. https://doi.org/10.1016/j.tre.2014.01.002 Kang, B., Deng, Y., Hewage, K., & Sadiq, R. (2019). A Method of Measuring Uncertainty for Z-Number. IEEE Transactions on Fuzzy Systems, 27(4), 731-738. https://doi.org/10.1109/TFUZZ.2018.2868496 Karabasevic, D., Stanujkic, D., & Urošević, S. (2015). Selection of candidates in the mining industry based on the application of the SWARA and the MULTIMOORA methods. Acta Montanistica Slovaca, 20(2), 116-124. https://doi.org/10.3390/ams20020116 Kaviani, A., Thompson, R. G., & Rajabifard, A. (2017). Improving regional road network resilience by optimised traffic guidance. Transportmetrica A: Transport Science, 13(9), 794–828. https://doi.org/10.1080/23249935.2017.1335807 Kazmi, S. Q. A., Naqvi, S. A. A., Hussain, E., & Ahmed, S. (2023). Resilience Assessment Framework for an Urban Road Network Subjected to Disruptions. KSCE Journal of Civil Engineering, 27(12), 5350–5361. https://doi.org/10.1007/s12205-023-1669-5 Keogh, M., & Cody, C. (2013). Resilience in regulated utilities. National Association of Regulatory Utility Commissioners. Washington DC. Kermanshachi, S., Nipa, T. J., & Pamidimukkala, A. (2021). Vulnerability Assessment and Model Development to Measure the Resilience Level of Transportation Infrastructures in North Texas. Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258. https://doi.org/10.3846/jbem.2010.12 Kocasakal, E. G., & Uluçay, V. (2025). CoCoSo method based on generalized distance measure with trapezoidal fuzzy multi-numbers for solving multi-criteria decision-making method problems. International Journal of Information Technology (Singapore). https://doi.org/10.1007/s41870-024-02397-6 Krohling, R. A., Pacheco, A. G., & dos Santos, G. A. (2019). TODIM and TOPSIS with Z-numbers. Frontiers of Information Technology & Electronic Engineering, 20(2), 283-291. https://doi.org/10.48550/arXiv.1609.05705 Leu, G., Abbass, H., & Curtis, N. (2010). Resilience of ground transportation networks: a case study on Melbourne. Lewis, T. G. (2006). Critical Infrastructure Protection in Homeland Security: defending a networked nation. John Wiley & Sons. Li, D. (2024). A linguistic Z-number-based dual perspectives information volume calculation method for driving behavior risk evaluation. Expert Systems with Applications, 257, 124992. https://doi.org/10.1016/j.eswa.2024.124992 Li, X., Lam, N., Qiang, Y., Li, K., Yin, L., Liu, S., & Zheng, W. (2016). Measuring County Resilience After the 2008 Wenchuan Earthquake. International Journal of Disaster Risk Science, 7(4), 393-412. https://doi.org/10.1007/s13753-016-0109-2 Li, Y., Basem, A., Alizadeh, A., Singh, P. K., Dixit, S., Abdulaali, H. K., Ali, R., Cajla, P., Rajab, H., & Ghachem, K. (2025). Synergizing neural networks with multi-objective thermal exchange optimization and PROMETHEE decision-making to improve PCM-based photovoltaic thermal systems. Case Studies in Thermal Engineering, 68, 105851. https://doi.org/10.1016/j.csite.2025.105851 Li, Z., Zhang, X., Ma, Y., Feng, C., & Hajiyev, A. (2019). A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties. International Journal of Disaster Risk Reduction, 36, 101140. https://doi.org/10.1016/j.ijdrr.2019.101140 Liao, H., Liu, F., Xiao, Y., Wu, Z., & Kazimieras Zavadskas, E. (2024). A survey on Z-number-based decision analysis methods and applications: What’s going on and how to go further? Information Sciences, 663, 120234. https://doi.org/10.1016/j.ins.2024.120234 Liao, T.-Y., Hu, T.-Y., & Ko, Y.-N. (2018). A resilience optimization model for transportation networks under disasters. Natural Hazards, 93(1), 469-489. https://doi.org/10.1007/s11069-018-3310-3 Liu, P., & Wu, X. (2012). A competency evaluation method of human resources managers based on multi-granularity linguistic variables and VIKOR method. Technological and economic Development of Economy, 18(4), 696-710. https://doi.org/10.3846/20294913.2012.753169 Lu, Q. C., Peng, Z. R., & Zhang, J. (2015). Identification and prioritization of critical transportation infrastructure: Case study of coastal flooding. Journal of Transportation Engineering, 141(3), 04014082. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000743 Lu, Q. C., Xu, P.-C., & Zhang, J. (2021). Infrastructure-based transportation network vulnerability modeling and analysis. Physica A: Statistical Mechanics and its Applications, 584, 126350. https://doi.org/10.1016/j.physa.2021.126350 Ma, F., Ao, Y., Wang, X., He, H., Liu, Q., Yang, D., & Gou, H. (2023). Assessing and enhancing urban road network resilience under rainstorm waterlogging disasters. Transportation Research Part D: Transport and Environment, 123, 103928. https://doi.org/10.1016/j.trd.2023.103928 Manivasagam, V., Narayanan, P., Kuma Gupta, N., Shinde, T., Panchal, H., Thangavel, R., Kumar Choudhary, A., Kumar, V., Sukumaran, A., Muthusamy, S., Kumar, A., & Sadasivuni, K. K. (2023). Investigation on 1-Propanol Electronic mode of fumigation on diesel engine performance and emission Fueled with diesel and lemongrass biodiesel blend using AHP- COPRAS. Energy Conversion and Management: X, 20, 100468. https://doi.org/10.1016/j.ecmx.2023.100468 Mardani, A., Jusoh, A., Zavadskas, E. K., Khalifah, Z., & Nor, K. M. (2015). Application of multiple-criteria decision-making techniques and approaches to evaluating of service quality: a systematic review of the literature. Journal of Business Economics and Management, 16(5), 1034-1068. Mardani, A., Zavadskas, E. K., Govindan, K., Amat Senin, A., & Jusoh, A. (2016). VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability, 8(1). https://doi.org/10.3390/su8010037 Martin-Breen, P., & Anderies, J. M. (2011). Resilience: A literature review. McAslan, A. (2010). The Concept of Resilience. Understanding its Origins, Meaning and Utility. Adelaide, Australia: Torrens Resilience Institute. Miller-Hooks, E., Zhang, X., & Faturechi, R. (2012). Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research, 39(7), 1633–1643. https://doi.org/10.1016/j.cor.2011.09.017 Mohammed, A., Yazdani, M., Oukil, A., & Santibanez Gonzalez, E. D. R. (2021). A Hybrid MCDM Approach towards Resilient Sourcing. Sustainability, 13(5), 2695. https://doi.org/10.3390/su13052695 Moslem, S. (2025). Evaluating commuters’ travel mode choice using the Z-number extension of Parsimonious Best Worst Method. Applied Soft Computing, 173, 112918. https://doi.org/10.1016/j.asoc.2025.112918 Moteff, J. D., Parfomak, P., Resources, S., & Division, I. (2004). Critical infrastructure and key assets: definition and identification. Murray-tuite, P. (2006). A Comparison of Transportation Network Resilience under Simulated System Optimum and User Equilibrium Conditions. Proceedings of the 2006 Winter Simulation Conference, 1398–1405. https://doi.org/10.1109/WSC.2006.323240 Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The review of higher education, 18(4), 423-436. https://doi.org/10.1353/rhe.1995.0008 Nair, R., Avetisyan, H., & Miller-Hooks, E. (2010). Resilience Framework for Ports and Other Intermodal Components. Transportation Research Record, 2166(1), 54-65. https://doi.org/10.3141/2166-07 Nguyen, P.-H., Pham, T.-V., Nguyen, L.-A. T., Pham, H.-A. T., Nguyen, T.-H. T., & Vu, T.-G. (2024). Assessing cybersecurity risks and prioritizing top strategies In Vietnam's finance and banking system using strategic decision-making models-based neutrosophic sets and Z number. Heliyon, 10(19), e37893. https://doi.org/10.1016/j.heliyon.2024.e37893 Nipa, T. J., Kermanshachi, S., & Pamidimukkala, A. (2023). Evaluation of Resilience dimensions on Reconstruction of Highway infrastructure projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 15(2), 04522057. https://doi.org/10.1061/JLADAH.LADR-899 Nipa Thahomina, J., & Kermanshachi, S. (2022). Establishment of Resilience Quantification Tool for Transportation Projects. In International Conference on Transportation and Development 2022 (pp. 251-261). Nipa, T. J., & Kermanshachi, S. (2022). Resilience measurement in highway and roadway infrastructures: Experts' perspectives. Progress in Disaster Science, 14, 100230. https://doi.org/10.1016/j.pdisas.2022.100230 Njock, P. G. A., Shen, S. L., Zhou, A., & Lin, S. S. (2022). A VIKOR-based approach to evaluate river contamination risks caused by wastewater treatment plant discharges. Water Research, 226, 119288. https://doi.org/10.1016/j.watres.2022.119288 Nogal, M., O’Connor, A., Martinez-Pastor, B., & Caulfield, B. (2017). Novel Probabilistic Resilience Assessment Framework of Transportation Networks against Extreme Weather Events. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(3). https://doi.org/10.1061/AJRUA6.0000908 Nourani, V., Najafi, H., Maleki, S., Jabbarian Paknezad, N., Jeanne Huang, J., Zhang, P., & Mohammadisepasi, S. (2024). Z-number based assessment of groundwater vulnerability to seawater intrusion. Journal of Hydrology, 632, 130859. https://doi.org/10.1016/j.jhydrol.2024.130859 Omer, M., Mostashari, A., & Nilchiani, R. (2013). Assessing resilience in a regional road-based transportation network. International Journal of Industrial and Systems Engineering, 13(4), 389-408. https://doi.org/10.1504/IJISE.2013.052605 Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of civil engineering, Belgrade, 2(1), 5-21. Opricovic, S., and Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1 Osogami, T., Imamichi, T., Mizuta, H., Suzumura, T., & Ide, T. (2013). Toward simulating entire cities with behavioral models of traffic. IBM Journal of Research and Development, 57(5), 6:1-6:10. https://doi.org/10.1147/JRD.2013.2264906 Ouyang, M., Dueñas-Osorio, L., & Min, X. (2012). A three-stage resilience analysis framework for urban infrastructure systems. Structural Safety, 36–37, 23–31. https://doi.org/10.1016/j.strusafe.2011.12.004 Patil, S. B., Patole, T. A., Jadhav, R. S., Suryawanshi, S. S., & Raykar, S. J. (2022). Complex Proportional Assessment (COPRAS) based Multiple-Criteria Decision Making (MCDM) paradigm for hard turning process parameters. Materials Today: Proceedings, 59, 835–840. https://doi.org/10.1016/j.matpr.2022.01.142 Public Safety Canada. (2009). National strategy for critical infrastructure. Her Majesty the Queen in Right of Canada. Stojčić, D. R., & Stević, Ž. (2018). EVALUATION AND SELECTION OF KPI IN TRANSPORT USING SWARA METHOD. https://www.researchgate.net/publication/325681450 Rasoanaivo, R. G., Yazdani, M., Zaraté, P., & Fateh, A. (2024). Combined Compromise for Ideal Solution (CoCoFISo): a multi-criteria decision-making based on the CoCoSo method algorithm. Expert Systems with Applications, 251, 124079. https://doi.org/10.1016/j.eswa.2024.124079 Redzuan, A., Anuar, A., Zakaria, R., Aminudin, E., Alias, N., Yuzir, M., & Alzahari, M. (2019). A review: Adaptation of escape route for a framework of road disaster resilient. IOP Conference Series: Materials Science and Engineering, 615, 012002. Reed, D. A., Kapur, K. C., & Christie, R. D. (2009). Methodology for Assessing the Resilience of Networked Infrastructure. IEEE Systems Journal, 3(2), 174–180. https://doi.org/10.1109/JSYST.2009.2017396 ROSE, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383–398. https://doi.org/10.1016/j.envhaz.2007.10.001 Rouhanizadeh, B., Kermanshachi, S., & Dhamangaonkar, V. S. (2020). Reconstruction of critical and interdependent infrastructure due to catastrophic natural disasters: lessons learned. In Construction research congress 2020 (pp. 895-904). Reston, VA: American Society of Civil Engineers. Safapour, E., & Kermanshachi, S. (2020). Identification and Categorization of Factors Affecting Duration of Post-Disaster Reconstruction of Interdependent Transportation Systems. Construction Research Congress 2020, 1290–1299. https://doi.org/10.1061/9780784482865.136 Safapour, E., & Kermanshachi, S. (2021). Reconstruction of Transportation Infrastructure with High Complexity: Mitigating Strategies for Effective Post-Disaster Reconstruction. International Conference on Transportation and Development 2021, 191–200. https://doi.org/10.1061/9780784483541.018 Safapour, E., & Kermanshachi, S. (2021). Uncertainty analysis of rework predictors in post-hurricane reconstruction of critical transportation infrastructure. Progress in Disaster Science, 11, 100194. https://doi.org/10.1016/j.pdisas.2021.100194 Sanayei, A., Farid Mousavi, S., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37(1), 24–30. https://doi.org/10.1016/j.eswa.2009.04.063 Sansano, R., & Chikaraishi, M. (2022). Exploring Natural and Social Factors Affecting Road Disruption Patterns and the Duration of Recovery: A Case from Hiroshima, Japan. Sustainability, 14(18), 11634. https://doi.org/10.3390/su141811634 Soltani-Sobh, A., Heaslip, K., Scarlatos, P., & Kaisar, E. (2016). Reliability based pre-positioning of recovery centers for resilient transportation infrastructure. International Journal of Disaster Risk Reduction, 19, 324-333. https://doi.org/10.1016/j.ijdrr.2016.09.004 Stanujkic, D., Karabasevic, D., & Zavadskas, E. K. (2015). A framework for the Selection of a packaging design based on the SWARA method. Engineering Economics, 26(2). https://doi.org/10.5755/j01.ee.26.2.8820 Stojčić, D. R., & Stević, Ž. (2018). Evaluation and selection of KPI in transport using SWARA method. Transport & Logistics: The International Journal, 8(44), 60-68. Ta, C., Goodchild, A. V., & Pitera, K. (2009). Structuring a Definition of Resilience for the Freight Transportation System. Transportation Research Record, 2097(1), 19-25. https://doi.org/10.3141/2097-03 Tamvakis, P., & Xenidis, Y. (2012). Resilience in transportation systems. Procedia-Social and Behavioral Sciences, 48, 3441-3450. https://doi.org/10.1016/j.sbspro.2012.06.1308 Tang, J., & Heinimann, H. R. (2018). A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads. PLOS ONE, 13(1), e0190616. https://doi.org/10.1371/journal.pone.0190616 Tendall, D. M., Joerin, J., Kopainsky, B., Edwards, P., Shreck, A., Le, Q. B., Kruetli, P., Grant, M., & Six, J. (2015). Food system resilience: Defining the concept. Global Food Security, 6, 17–23. https://doi.org/10.1016/j.gfs.2015.08.001 Tonn, G., Czajkowski, J., Kunreuther, H., Angotti, K., & Gelman, K. (2020). Measuring Transportation Infrastructure Resilience: Case Study with Amtrak. Journal of Infrastructure Systems, 26(1). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000526 Torkayesh, A. E., Pamucar, D., Ecer, F., & Chatterjee, P. (2021). An integrated BWM-LBWA-CoCoSo framework for evaluation of healthcare sectors in Eastern Europe. Socio-Economic Planning Sciences, 78, 101052. https://doi.org/10.1016/j.seps.2021.101052 Triantaphyllou, E., & Triantaphyllou, E. (2000). Multi-criteria decision making methods (pp. 5-21). Springer Us. Ulutas, A., Karakus, C. B., & Topal, A. (2023). "Location selection for logistics center with fuzzy SWARA and CoCoSo methods." Journal of Multi-Criteria Decision Analysis. https://doi.org/10.3233/jifs-191400 UNDRR (2019). Global Assessment Report on Disaster Risk Reduction. United Nations Office for Disaster Risk Reduction. United States. Office of Homeland Security. (2002). National strategy for homeland security. Office of Homeland Security. Urosevic, S., Karabasevic, D., Stanujkic, D., & Maksimovic, M. (2017). An Approach to Personnel Selection in the Tourism Industry Based on the SWARA and the Waspas Methods. Economic Computation & Economic Cybernetics Studies & Research, 51(1). Vugrin, E. D., Turnquist, M. A., & Brown, N. J. (2014). Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks. International Journal of Critical Infrastructures, 10(3-4), 218-246. https://doi.org/10.1504/IJCIS.2014.066356 Vugrin, E. D., Warren, D. E., & Ehlen, M. A. (2011). A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Safety Progress, 30(3), 280–290. https://doi.org/10.1002/prs.10437 Walker, B., Carpenter, S., Anderies, J., Abel, N., Cumming, G., Janssen, M., Lebel, L., Norberg, J., Peterson, G. D., & Pritchard, R. (2002). Resilience Management in Social-ecological Systems: A Working Hypothesis for a Participatory Approach. Ecology and Society, 6 (1). https://doi.org/10.5751/es-00356-060114 Wan, Z., Lang, Q., Zhang, Y., Zhang, J., Chen, Y., Liu, G., & Liu, H. (2025). Improving the resilience of urban transportation to natural disasters: the case of Changchun, China. Scientific Reports, 15(1), 1116. https://doi.org/10.1038/s41598-024-84672-x Wang, P., Zhu, Z., & Wang, Y. (2016). A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Information sciences, 345, 27-45. https://doi.org/10.1016/j.ins.2016.01.076 Więckowski, J., Gajewski, P., Swałdek, K., & Sałabun, W. (2024). Application of COPRAS, PROMETHEE, and EDAS methods in sustainable energy development: A comparative study case. Procedia Computer Science, 246, 5428-5438. https://doi.org/10.1016/j.procs.2024.09.680 Woods, D. D. (2015). Four concepts for resilience and the implications for the future of resilience engineering. Reliability Engineering & System Safety, 141, 5-9. https://doi.org/10.1016/j.ress.2015.03.018 Xu, X., Chen, A., Jansuwan, S., Yang, C., & Ryu, S. (2018). Transportation network redundancy: Complementary measures and computational methods. Transportation Research Part B: Methodological, 114, 68–85. https://doi.org/10.1016/j.trb.2018.05.014 Xu, G., & Zhang, X. (2022). Statistical analysis of resilience in an air transport network. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.969311 Xun, X., & Yuan, Y. (2020). Research on the urban resilience evaluation with hybrid multiple attribute TOPSIS method: an example in China. Natural Hazards, 103(1), 557–577. https://doi.org/10.1007/s11069-020-04000-0 Yang, C.-L., Yuan, B. J. C., & Huang, C.-Y. (2015). Key Determinant Derivations for Information Technology Disaster Recovery Site Selection by the Multi-Criterion Decision Making Method. Sustainability, 7(5), 6149-6188. https://doi.org/10.3390/su7056149 Yang, Y., Pan, S., & Ballot, E. (2017). Freight Transportation Resilience Enabled by Physical Internet. IFAC-PapersOnLine, 50(1), 2278-2283. https://doi.org/10.1016/j.ifacol.2017.08.197 Yang, Z., Barroca, B., Bony-Dandrieux, A., & Dolidon, H. (2022). Resilience Indicator of Urban Transport Infrastructure: A Review on Current Approaches. Infrastructures, 7(3), 33. https://doi.org/10.3390/infrastructures7030033 Yang, Z., Barroca, B., Laffréchine, K., Weppe, A., Bony-Dandrieux, A., & Daclin, N. (2023). A multi-criteria framework for critical infrastructure systems resilience. International Journal of Critical Infrastructure Protection, 42, 100616. https://doi.org/10.1016/j.ijcip.2023.100616 Yang, Z., Barroca, B., Weppe, A., Bony-Dandrieux, A., Laffréchine, K., Daclin, N., November, V., Omrane, K., Kamissoko, D., Benaben, F., Dolidon, H., Tixier, J., & Chapurlat, V. (2023). Indicator-based resilience assessment for critical infrastructures – A review. Safety Science, 160, 106049. https://doi.org/10.1016/j.ssci.2022.106049 Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501–2519. https://doi.org/10.1108/MD-05-2017-0458 Youn, B. D., Hu, C., & Wang, P. (2011). Resilience-Driven System Design of Complex Engineered Systems. Journal of Mechanical Design, 133(10). https://doi.org/10.1115/1.4004981 Zadeh, L. A. (2011). A Note on Z-numbers. Information Sciences, 181(14), 2923-2932. https://doi.org/10.1016/j.ins.2011.02.022 Zhang, W., & Wang, N. (2016). Resilience-based risk mitigation for road networks. Structural Safety, 62, 57–65. https://doi.org/10.1016/j.strusafe.2016.06.003 Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404-1413. https://doi.org/10.1080/15732479.2016.1271813 Zhang, X., & Miller-Hooks, E. (2015). Scheduling Short-Term Recovery Activities to Maximize Transportation Network Resilience. Journal of Computing in Civil Engineering, 29(6). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000417 Zhang, X., Miller-Hooks, E., & Denny, K. (2015). Assessing the role of network topology in transportation network resilience. Journal of Transport Geography, 46, 35–45. https://doi.org/10.1016/j.jtrangeo.2015.05.006 Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404–1413. https://doi.org/10.1080/15732479.2016.1271813 Zhou, H., Wang, J. A., Wan, J., & Jia, H. (2010). Resilience to natural hazards: a geographic perspective. Natural hazards, 53, 21-41. https://doi.org/10.1007/s11069-009-9407-y Zhu, W., Wang, S., Liu, S., Gao, X., Zhang, P., & Zhang, L. (2023). Reliability and Robustness Assessment of Highway Networks under Multi-Hazard Scenarios: A Case Study in Xinjiang, China. Sustainability, 15(6). https://doi.org/10.3390/su15065379 Zhu, Y., Zeng, S., Lin, Z., & Ullah, K. (2023). Comprehensive evaluation and spatial-temporal differences analysis of China’s inter-provincial doing business environment based on Entropy-CoCoSo method. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1088064 Zobel, C.W., Khansa, L., 2014. Characterizing multi-event disaster resilience, Computers & Operations Research. Pergamon 42, 83–94. https://doi.org/10.1016/j.cor.2011.09.024 Zolfani, S. H., & Saparauskas, J. (2013). New application of SWARA method in prioritizing sustainability assessment indicators of energy system. Engineering economics, 24(5), 408-414. https://doi.org/10.5755/j01.ee.24.5.4526 Zolfani, S. H., Zavadskas, E. K., & Turskis, Z. (2013). Design of Products with Both International and Local Perspectives based on Yin-Yang Balance Theory and Swara Method. Economic Research-Ekonomska Istraživanja, 26(2), 153–166.https://doi.org/10.1080/1331677X.2013.11517613 |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信