| 系統識別號 | U0002-0806202515544800 |
|---|---|
| DOI | 10.6846/tku202500195 |
| 論文名稱(中文) | 從回收地熱發電後的低濃度鋰地熱水中以D2EHPA萃取濃縮鋰並結合化學沉澱技術 |
| 論文名稱(英文) | Lithium Recovery and Concentration from Low-Concentration Geothermal Brine of Geothermal Power Generation via D2EHPA Solvent Extraction Integrated with Chemical Precipitation |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 水資源及環境工程學系碩士班 |
| 系所名稱(英文) | Department of Water Resources and Environmental Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 林鈺涵 |
| 研究生(英文) | Yu-Han Lin |
| 學號 | 612480045 |
| 學位類別 | 碩士 |
| 語言別 | 英文 |
| 第二語言別 | |
| 口試日期 | 2025-05-28 |
| 論文頁數 | 84頁 |
| 口試委員 |
指導教授
-
李奇旺(chiwang@mail.tku.edu.tw)
口試委員 - 林志麟(jrlin@cycu.edu.tw) 口試委員 - 彭晴玉(cypeng@gms.tku.edu.tw) |
| 關鍵字(中) |
鋰回收 地熱滷水 D2EHPA 溶劑萃取 化學沉澱 磷酸鋰 氟化鋰 |
| 關鍵字(英) |
Lithium Recovery Geothermal Brine D2EHPA Solvent Extraction Chemical Precipitation Lithium Phosphate Lithium Fluoride |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
本研究旨在初步評估從地熱發電後之低濃度含鋰地熱滷水中回收與濃縮鋰的可行性,並採行了 D2EHPA 溶劑萃取與化學沉澱相結合之策略。在溶劑萃取部分,確定25℃為最佳操作條件,其參數為 D2EHPA/煤油重量比1.12 g/g、有機相/水相(O/A)比0.08及總D2EHPA量0.0029 莫耳。鋰萃取效率穩定維持在85-86% 之間。然而,在較高溫度下,D2EHPA對鈉之選擇性(α_Na^Li)略有增強,其值從1.8降至1.75。總有機碳(TOC)分析證實,水相中之TOC主要源自 D2EHPA 之溶出,而煤油溶出所導致之 TOC 僅為1.6-5 mg/L。反萃取研究顯示,在初始有機相含鋰0.0032 M 及鈉0.049 M 的條件下,即使使用3 M HCl ,鋰之反萃取效率僅12.29%,遠低於預期;而鈉之反萃取效率則顯著較高(高達 55%),濃縮倍率達133.85倍。 在化學沉澱部分,本研究利用水化學模擬預測沉澱效率,比較了氟化鋰(LiF)、碳酸鋰(Li2CO3)及磷酸鋰Li3PO4之沉澱行為。模擬結果預測,碳酸鋰需 5 M 之鋰濃度方能達到40%的沉澱效率,相較於氟化鋰和磷酸鋰並無優勢;因此,本研究主要採用氟化鋰及磷酸鋰之程序。氟化鋰與磷酸鋰之沉澱特性,在初始鋰濃度800 mg/L、反應時間 5 小時,以及飽和指數(SI)和鈉/鋰莫耳比變化下進行了探討。氟化鋰沉澱在SI約1時即可達到80-90%之效率。然而,60℃下之沉澱效率僅略低於30℃,顯示較高溫度對氟化鋰沉澱並無顯著影響。相反地,磷酸鋰之沉澱效率與溫度呈正相關;例如在60℃時可達97%之效率,且在較高溫度下,鈉/鋰莫耳比(如3.56)對其影響較小。在較低初始鋰濃度(例如400 mg/L)下,高鈉/鋰莫耳比(例如1.14至2.54)會導致磷酸鋰沉澱效率顯著下降(從77.42%降至66.85%),甚至可能降至0%,這或許存在鈉離子間之競爭效應。 |
| 英文摘要 |
This study aimed to conduct a preliminary feasibility assessment for the recovery and concentration of lithium from low-concentration geothermal brines, employing a combined strategy of D2EHPA solvent extraction and chemical precipitation. In the solvent extraction section, optimal operating conditions were established at 25◦C: a D2EHPA/kerosene concentration of 1.12 g/g, an organic-to-aqueous (O/A) ratio of 0.08, and a total D2EHPA amount of 0.0029 moles. Lithium extraction efficiency consistently remained within 85-86%. However, the selectivity of D2EHPA for sodium (α_Na^Li) slightly increased at elevated temperatures, decreasing from 1.8 to 1.75. Total Organic Carbon (TOC) analysis confirmed that the aqueous phase TOC primarily originated from D2EHPA dissolution, with kerosene dissolution contributing only 1.6 − 5mg/L of TOC. Back-extraction studies revealed that under initial organic phase conditions of 0.0032 M lithium and 0.049 M sodium, the lithium back-extraction efficiency was merely 12.29% even with 3 M HCl , significantly lower than anticipated. Conversely, the sodium back-extraction efficiency was remarkably high (up to 55%), achieving a concentration factor of 133.85. In the chemical precipitation section, the study compared the precipitation efficiencies of lithium fluoride (LiF), lithium carbonate (Li2CO3), and lithium phosphate (Li3PO4) using water chemistry simulations. Predictions indicated that lithium carbonate required a 5 M lithium concentration to achieve only 40% precipitation efficiency, offering no advantage compared to lithium fluoride and lithium phosphate. Consequently, this study adopted lithium fluoride and lithium phosphate procedures. The precipitation characteristics of LiF and Li3PO4 were investigated under an initial lithium concentration of 800mg/L, a reaction time of 5 hours, and varying saturation index (SI) and Na/Li molar ratios. LiF precipitation achieved an 80-90% efficiency at an SI of approximately 1. However, the efficiency at 60◦C was only marginally lower than at 30◦C, indicating no significant effect of higher temperatures on LiF precipitation. In contrast, lithium phosphate precipitation efficiency demonstrated a positive correlation with increasing temperature; for instance, at 60◦C, an efficiency of 97% was achieved, with the effect of the Na/Li molar ratio (e.g., 3.56 ) being less pronounced at higher temperatures. At lower initial lithium concentrations (e.g., 400mg/L ), high Na/Li molar ratios (e.g., 1.14 to 2.54 ) led to a significant decrease in lithium phosphate precipitation efficiency (from 77.42% to 66.85% ), or even 0%, potentially due to competitive effects from sodium. |
| 第三語言摘要 | |
| 論文目次 |
CONTENTS Acknowledgements i 中文摘要 ii Abstract iv Contents vi List of Tables viii List of Figures ix 1 Introduction 1 1.1 Background 1 1.2 Objectives 4 2 Literature reviews 6 2.1 Lithium 6 2.1.1 Importance of lithium in Electric Vehicles (EVs) 7 2.1.2 Lithium Supply for the Electric Vehicle Industry 10 2.2 Lithium extraction technologies 15 2.2.1 Lithium extraction from ore 16 2.2.2 Evaporative precipitation method 17 2.2.3 Adsorption 19 2.2.4 Precipitation 22 2.2.5 Solvent Extraction 24 2.2.6 Membrane Technology 25 2.3 Feasibility assessment of lithium extraction technologies 26 2.3.1 The extraction and stripping behavior of metals using D2EHPA 27 2.3.2 Lithium precipitation reactions 31 3 Materials and methods 33 3.1 Research Framework and Experimental Design 33 3.2 Experimental Materials 34 3.3 Analysis Methods 35 3.4 Lithium ion extraction experiment 37 3.5 Lithium ion stripping experiment 42 3.6 Lithium Chemical Precipitation 45 4 Results and discuss 48 4.1 lithium extraction efficiency 48 4.1.1 Effect of Initial pH on Extraction Efficiency 48 4.1.2 D2EHPA/Kerosene at various ratios 49 4.1.3 Varying organic-to-aqueous (O/A) ratios 53 4.1.4 Influence of temperature on extraction 56 4.1.5 Kerosene Dissolution in the Aqueous Phase 58 4.2 Lithium Stripping Efficiency 58 4.3 Precipitation method 61 4.3.1 Water chemistry precipitation pattern prediction 61 4.3.2 Influence of initial lithium concentration 64 4.3.3 Temperature effects on lithium compound precipitation efficiency 68 5 Conclusions and recommendations 71 References 73 LIST OF TABLES 2.1 Regional variations in Li+, Na+, K+ concentrations and Na/Li, K/Li molar ratios of geothermal water and Seawater. 12 3.1 Experimental Materials. 34 3.2 Residual TOC concentration in acidified samples awaiting ICP analysis, and TOC removal efficiency. 37 3.3 Data on univalent cation concentrations in water samples from the geothermal power plant at VA KANG AN, Taitung, Taiwan. 38 3.4 0.45 μm and 0.22 μm filtration for lithium and sodium ion extration efficiency. (Triplicate Sample Analysis).40 4.1 Lithium extration efficiency in aqueous phase and pH change at different initial pH. 49 LIST OF FIGURES 2.1 Three types of geothermal power plants. 15 2.2 Technology adoption decision process. 27 2.3 Changes of D2EHPA in aqueous and organic phases during extraction [29, 31]. 28 2.4 XRD analysis of lithium phosphate at various reaction temperatures, as provided by Emmanuel et al. [68]. (from Emmanuel et al. [68]’s Electronic Supplementary Information). 32 3.1 The Research Framework and Conceptual Map. 34 3.2 Turbid appearance of acidified post-extraction samples (Before filtra- tion); clear appearance of samples following filtration with a 0.22 μm syringe filter (After filtration). 36 3.3 Extration batch experiments. 38 3.4 Lithium removal efficiency within 24 hours in batch experiments at 25°C with an initial lithium concentration of 2.14 mg/L, sodium hydroxide concentration of 0.008 M, and a total amount of 0.0028 moles of D2EHPA. 39 3.5 Stripping batch experiment. 44 3.6 Lithium extration efficiency within 17 hours in batch experiments at 60°C with an initial lithium concentration of 2.12 mg/L, sodium hy- droxide concentration of 0.008 M, and a total amount of 0.0029 moles of D2EHPA. 44 3.7 Chemical Precipitation batch experiment. 47 4.8 Influence of hydrochloric acid concentration in the stripping aqueous phase on sodium stripping efficiency and concentration factor. 60 4.9 Trends in lithium precipitation efficiency via LiF precipitation titrated with NaF as a function of SI. PHREEQC Modeling conditions: [LiCl] = 0.115 M, pH range 3-12. 61 4.10 Trends in lithium precipitation efficiency via Li2CO3 precipitation titrated with Na2CO3 as a function of SI. PHREEQC Modeling conditions: [LiCl] = 5 M, pH range 3-8. 62 4.11 Trends in lithium precipitation efficiency via Li3PO4 precipitation titrated with Na3PO4 as a function of SI. PHREEQC Modeling conditions: [LiCl] = 0.115 M, pH range 9-13. 63 4.12 Relationship between Na/Li molar ratio and lithium phosphate precip- itation efficiency. (Conditions: initial [Li] = 400 mg/L, SI = 3.77-4.37, reaction time = 48 hrs) 66 4.13 Relationship between Na/Li molar ratio and lithium phosphate precip- itation efficiency. (Conditions: initial [Li] = 520 mg/L, SI = 3.77-4.37, reaction time = 48 hrs) 66 4.14 Relationship between Na/Li molar ratio and lithium phosphate precip- itation efficiency. (Conditions: Initial [Li] = 800 mg/L, SI = 3.77-4.37, reaction time = 48 hrs) 67 4.15 Effect of Na/Li molar ratio on lithium phosphate precipitation efficiency. (Conditions: initial [Li] = 800 mg/L, SI = 4.17, reaction Time = 48 hrs) 67 4.16 Influence of temperature on lithium fluoride precipitation efficiency. (Conditions: initial Li = 805 mg/L, reaction time = 5 hrs, SI = 0.54-1.02, Na/Li molar ratio = 0.98-2.25) 69 4.17 Influence of temperature on Lithium phosphate precipitation efficiency. (Conditions: initial Li = 805 mg/L, reaction time = 5 hrs, SI = 4.35-4.83, Na/Li molar ratio = 1.22-3.56) 69 |
| 參考文獻 |
REFERENCES
[1] J. Szlugaj and B. Radwanek-Bak, (2022) “Lithium sources and their current use” Gospodarka Surowcami Mineralnymi 38(1): DOI: 10.24425/gsm.2022. 140613.
[2] W. T. Stringfellow and P. F. Dobson, (2021) “Technology for the recovery of lithium from geothermal brines” Energies 14(20): 6805. DOI: 10.3390/en14206805.
[3] Y. Liu, B. Ma, Y. Lü, C. Wang, and Y. Chen, (2023) “A review of lithium extrac- tion from natural resources” International Journal of Minerals, Metallurgy and Materials 30(2): 209-224. DOI: 10.1007/s12613-022-2544-y.
[4] D. Calisaya-Azpilcueta, S. Herrera-Leon, and L. A. Cisternas, (2020) “Current and Future Global Lithium Production Till 2025” The Open Chemical Engi- neering Journal 14(1): DOI: 10.2174/1874123102014010036.
[5] L. Kavanagh, J. Keohane, G. Garcia Cabellos, A. Lloyd, and J. Cleary, (2018) “Global lithium sources – industrial use and future in the electric vehicle industry: a review” Resources 7(3): 57. DOI: 10.3390/resources7030057.
[6] Y. R. Smith, P. Kumar, and J. D. McLennan, (2017) “On the extraction of rare earth elements from geothermal brines” Resources 6(3): 39. DOI: 10.3390/ resources6030039.
[7] G. Liu, Z. Zhao, and A. Ghahreman, (2019) “Novel approaches for lithium ex- traction from salt-lake brines: A review” Hydrometallurgy 187: 81-100. DOI: 10.1016/j.hydromet.2019.05.005.
[8] Y. Song, Z. Zhao, and L. He, (2020) “Lithium recovery from Li3PO4 leaching liquor: Solvent extraction mechanism of saponified D2EHPA system” Separa- tion and Purification Technology 249: 117161. DOI: 10.1016/j.seppur. 2020.117161.
[9] P. Xu, J. Hong, X. Qian, Z. Xu, H. Xia, X. Tao, Z. Xu, and Q.-Q. Ni, (2021) “Materials for lithium recovery from salt lake brine” Journal of Materials Science 56: 16-63. DOI: 10.1007/s10853-020-05019-1.
[10] X.-Y. Nie, S.-Y. Sun, X. Song, and J.-G. Yu, (2017) “Further investigation into lithium recovery from salt lake brines with different feed characteristics by elec- trodialysis” Journal of Membrane Science 530: 185-191. DOI: 10.1016/j. memsci.2017.02.020.
[11] C. Shi, Y. Jia, C. Zhang, H. Liu, and Y. Jing, (2015) “Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate” Fusion Engineering and Design 90: 1-6. DOI: 10.1016/j.fusengdes.2014.09.021.
[12] J. Yu, M. Zheng, Q. Wu, Z. Nie, and L. Bu, (2015) “Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity- gradient solar pond” Solar Energy 115: 133-144. DOI: 10.1016/j.solener.2015.02.021.
[13] V. Flexer, C. F. Baspineiro, and C. I. Galli, (2018) “Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing” Science of the Total Environment 639: 1188- 1204. DOI: 10.1016/j.scitotenv.2018.05.223.
[14] Z.-Y. Guo, Z.-Y. Ji, Q.-B. Chen, J. Liu, Y.-Y. Zhao, F. Li, Z.-Y. Liu, and J.-S. Yuan, (2018) “Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes” Journal of Cleaner Production 193: 338-350. DOI: 10.1016/j.jclepro. 2018.05.077.
[15] Z. Zhou, J. Fan, X. Liu, Y. Hu, X. Wei, Y. Hu, W. Wang, and Z. Ren, (2020) “Recovery of lithium from salt-lake brines using solvent extraction with TBP as extractant and FeCl3 as co-extraction agent” Hydrometallurgy 191: 105244. DOI: 10.1016/j.hydromet.2019.105244.
[16] A. Masmoudi, G. Zante, D. Trébouet, R. Barillon, and M. Boltoeva, (2021) “Solvent extraction of lithium ions using benzoyltrifluoroacetone in new solvents” Separation and Purification Technology 255: 117653. DOI: 10.1016/j. seppur.2020.117653.
[17] T. Hano, M. Matsumoto, T. Ohtake, N. Egashir, and F. Hori, (1992) “Recov- ery of lithium from geothermal water by solvent extraction technique” Solvent Extraction and Ion Exchange 10(2): 195-206.
[18] X. Wang, Z. Zhou, X. Si, Y. Lu, and Q. Liu, (2024) “Efficient Recovery of Lithium from Spent Lithium Ion Batteries Effluent by Solvent Extraction Using 2-Ethylhexyl Hydrogen {[Bis (2-Ethylhexyl) Amino] methyl} Phosphonate Acid” Metals 14(3): 345. DOI: 10.3390/met14030345.
[19] Y. Jiang, G. Zhang, K. Zhou, C. Peng, K. A. Salih, H. Zhou, Y. Wu, and W. Chen, (2024) “Sequential separation and recovery of phosphorus and lithium from lithium phosphate slag by selective extraction-precipitation” Separation [20] C. Paredes and E. R. de San Miguel, (2020) “Selective lithium extraction and concentration from diluted alkaline aqueous media by a polymer inclusion mem- brane and application to seawater” Desalination 487: 114500. DOI: 10.1016/ j.desal.2020.114500.
[21] P. K. Chonbey, K.-S. Chung, M.-s. Kim, J.-c. Lee, and R. R. Srivastava, (2017) “Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs)” Min-erals Engineering 110: 104-121. DOI: 10.1016/j.mineng.2017.04.008.
[22] S. Yang, F. Zhang, H. Ding, P. He, and H. Zhou, (2018) “Lithium metal extraction from seawater” Joule 2(9): 1648-1651. DOI: 10.1016/j.joule.2018.07.006.
[23] Z. Li, C. Li, X. Liu, L. Cao, P. Li, R. Wei, X. Li, D. Guo, K.-W. Huang, and Z. Lai, (2021) “Continuous electrical pumping membrane process for seawater lithium mining” Energy & Environmental Science 14(5): 3152-3159. DOI: 10.1039/D1EE00354B.
[24] S. Raiguel, V. T. Nguyen, I. Reis Rodrigues, C. Deferm, S. Riaño, and K. Binne- mans, (2023) “Recovery of lithium from simulated nanofiltration-treated seawater desalination brine using solvent extraction and selective precipitation” Solvent Extraction and Ion Exchange 41(4): 425-448. DOI: 10.1080/07366299.2023.2206440.
[25] G. R. Harvianto, S.-H. Kim, and C.-S. Ju, (2016) “Solvent extraction and strip- ping of lithium ion from aqueous solution and its application to seawater” Rare Metals 35: 948-953. DOI: 10.1007/s12598-015-0453-1.
[26] L.-Y. Yu, K.-J. Wu, and C.-H. He, (2022) “Tailoring hydrophobic deep eutectic solvent for selective lithium recovery from dilute aqueous solutions” Separation and Purification Technology 281: 119928. DOI: 10.1016/j.seppur.2021. 119928.
[27] O. Murphy and M. N. Haji, (2022) “A review of technologies for direct lithium ex- traction from low Li+ concentration aqueous solutions” Frontiers in Chemical Engineering 4: 1008680. DOI: 10.3389/fceng.2022.1008680.
[28] S.-R. Song and Y.-C. Lu, “Geothermal explorations on the slate formation of Taiwan”. In: Renewable geothermal energy explorations. IntechOpen, 2018. DOI: 10.5772/intechopen.81157.
[29] D. Shi, B. Cui, L. Li, M. Xu, Y. Zhang, X. Peng, L. Zhang, F. Song, and L. Ji, (2020) “Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using D2EHPA” Desalination 479: 114306. DOI: 10.1016/j.desal.2019.114306.
[30] P. K. Chonbey, M.-s. Kim, R. R. Srivastava, J.-c. Lee, and J.-Y. Lee, (2016) “Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources” Minerals Engineering 89: 119-137. DOI: 10.1016/j.mineng.2016.01.010.
[31] P.-C. Lee, C.-W. Li, J.-Y. Chen, Y.-S. Li, and S.-S. Chen, (2011) “*Dissolution of D2EHPA in liquid-liquid extraction process: Implication on metal removal and organic content of the treated water” Water research 45(18): 5953-5958. DOI: 10.1016/j.watres.2011.08.054.
[32] G. Gunn. Critical metals handbook. John Wiley & Sons, 2014, 230-260. DOI: 10.1002/9781118755341.ch10.
[33] Y. Ghorbani, S. E. Zhang, J. E. Bourdeau, N. S. Chipangamate, D. H. Rose, I. Valodia, and G. T. Nwaila, (2024) “The strategic role of lithium in the green energy transition: Towards an OPEC-style framework for green energy-mineral exporting countries (GEMEC)” Resources Policy 90: 104737. DOI: 10.1016/j.resourpol.2024.104737.
[34] M. Amir, R. G. Deshmukh, H. M. Khalid, Z. Said, A. Raza, S. Muyeen, A.-S. Nizami, R. M. Elavarasan, R. Saidur, and K. Sopian, (2023) “Energy storage tech- nologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies” Journal of Energy Storage 72: 108694. DOI: 10.1016/j.est.2023.108694.
[35] O. C. Ench, (2011) “A review on petroleum: Source, uses, processing, products and the environment” Journal of applied sciences 11(12): 2084-2091. DOI: 10.3923/jas.2011.2084.2091.
[36] L. Alfieri, L. Feyen, and G. Di Baldassarre, (2016) “Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies” Climatic Change 136: 507-521. DOI: 10.1007/s10584-016-1641-1.
[37] C. A. Horowitz, (2016) “Paris agreement” International Legal Materials 55(4): 740-755. DOI: 10.1017/S0020782900004253.
[38] A. Väyrynen and J. Salminen, (2012) “Lithium ion battery production” The Journal of Chemical Thermodynamics 46: 80-85. DOI: 10.1016/j.jct. 2011.09.005.
[39] S. Sharma, A. K. Panwar, and M. Tripathi, (2020) “Storage technologies for elec- tric vehicles” Journal of traffic and transportation engineering (english edition) 7(3): 340-361. DOI: 10.1016/j.jtte.2020.04.004.
[40] M. H. S. M. Haram, J. W. Lee, G. Ramasamy, E. E. Ngu, S. P. Thiagarajah, and Y. H. Lee, (2021) “Feasibility of utilising second life EV batteries: Appli- cations, lifespan, economics, environmental impact, assessment, and challenges” Alexandria Engineering Journal 60(5): 4517-4536. DOI: 10.1016/j.aej. 2021.03.021.
[41] H. Zhang, L. Wang, H. Li, and X. He, (2021) “Criterion for identifying anodes for practically accessible high-energy-density lithium-ion batteries” ACS Energy Letters 6(10): 3719-3724. DOI: 10.1021/acsenergylett.1c01713.
[42] W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.-M. Kang, and W.-S. Yoon, (2020) “Advances in the cathode materials for lithium rechargeable batteries” Angewandte Chemie International Edition 59(7): 2578-2605. DOI: 10. 1002/anie.201902359.
[43] T. Krauskoþ, F. H. Richter, W. G. Zeier, and J. Janek, (2020) “Physicochemical concepts of the lithium metal anode in solid-state batteries” Chemical reviews 120(15): 7745-7794. DOI: 10.1021/acs.chemrev.0c00431.
[44] J. T. Cullen, S. Hurwitz, J. D. Barnes, J. C. Lassiter, S. Penniston-Dorland, A. Meixner, F. Wilckens, S. A. Kasemann, and R. B. McCleskey, (2021) “ The systematics of chlorine, lithium, and boron and δ37Cl, δ7Li, and δ11B in the hydrothermal system of the Yellowstone Plateau volcanic field” Geochemistry, Geophysics, Geosystems 22(4): e2020GC009589. DOI: 10.1029/2020GC009589.
[45] A. Dini, P. Lattanzi, G. Ruggieri, and E. Trumpy, (2022) “Lithium occurrence in Italy – an overview” Minerals 12(8): 945. DOI: 10.3390/min12080945.
[46] V. Balaram, M. Santosh, M. Satyanarayanan, N. Srinivas, and H. Gupta, (2024) “Lithium: A review of applications, occurrence, exploration, extraction, rercy- cling, analysis, and environmental impact” Geoscience Frontiers 101868. DOI: 10.1016/j.gaf.2024.101868.
[47] M. Wang, H. Zhang, L. Liang, Z. Zhu, and A. Zhang, (2024) “Constraining the properties of the heat sources of high-temperature hydrogeothermal systems: Evidence from the lithium concentrations of geothermal waters” Journal of Hy- drology 640: 131696. DOI: 10.1016/j.hydrol.2024.131696.
[48] Z. Steiner, W. M. Landing, M. S. Bohlin, M. Greaves, S. Prakash, P. Vinay- achandran, and E. P. Achterberg, (2022) “Variability in the concentration of lithium in the Indo-Pacific Ocean” Global Biogeochemical Cycles 36(6): e2021GB007184. DOI: 10.1029/2021GB007184.
[49] H. Barbosa, A. M. Soares, E. Pereira, and R. Freitas, (2023) “Lithium: A review on concentrations and impacts in marine and coastal systems” Science of The Total Environment 857: 159374. DOI: 10.1016/j.scitotenv.2022.159374.
[50] Y. Wu and X. Zhou, (2023) “*Structural control effects on hot springs’ hydro- chemistry in the northern Red River Fault Zone: Implications for geothermal systems in fault zones” Journal of Hydrology 623: 129836. DOI: 10.1016/j. jhydrol.2023.129836.
[51] Q. Guo, M. Liu, J. Li, X. Zhang, and Y. Wang, (2014) “Acid hot springs dis- charged from the Rehai hydrothermal system of the Tengchong volcanic area (China): formed via magmatic fluid absorption or geothermal steam heating?” Bulletin of Volcanology 76: 1-12. DOI: 10.1007/s00445-014-0868-9.
[52] V. Goldberg, D. Winter, F. Nitschke, S. Held, F. Groß, D. Pfeiffer, J. Uhde, D. Morata, J. Koschikowski, and T. Kohl, (2023) “Development of a continuous silica treatment strategy for metal extraction processes in operating geothermal plants” Desalination 564: 116775. DOI: 10.1016/j.desal.2023.116775.
[53] C. Wang, W. Lo, S.-R. Song, and M.-Y. Wu, (2021) “Geothermal energy develop- ment roadmap of Taiwan by play fairway analysis” Geothermics 97: 102242. DOI: 10.1016/j.geothermics.2021.102242.
[54] D. Fries, S. Lebouil, V. Maurer, C. Martin, C. Banjard, G. Ravier, R. Boguais, and S. Amari. “Lithium extraction through pilot scale tests under real geothermal conditions of the Upper Rhine Graben”. In: Proceedings European Geothermal Congress. 2022, 7. DOI: 10.3390/en16207168.
[55] P. Bayer, L. Rybach, P. Blum, and R. Brauchler, (2013) “Review on life cycle environmental effects of geothermal power generation” Renewable and Sus- tainable Energy Reviews 26: 446-463. DOI: 10.1016/j.rser.2013.05.039.
[56] H. Li, J. Eksteen, and G. Kuang, (2019) “Recovery of lithium from mineral resources: State-of-the-art and perspectives A review” Hydrometallurgy 189: 105129. DOI: 10.1016/j.hydromet.2019.105129.
57] H. Nicolaci, P. Young, N. Snowdon, A. Rai, T. Chen, J. Zhang, Y. Lin, E. Bailey, R. Shi, and N. Zheng. Direct Lithium Extraction: A potential game changing technology. 2023. URL: https://cdn-blob.investsmart.com.au/articles/ images/alankohler/LITHIUM%20technology_20230428_0906.pdf.
[58] D. Liu, Z. Li, L. He, and Z. Zhao, (2021) “Facet engineered Li3PO4 for lithium recovery from brines” Desalination 514: 115186. DOI: 10.1016/j.desal. 2021.115186.
[59] Z.-C. Lv, F.-F. Wang, J.-C. Wang, P.-F. Wang, and T.-F. Yi, (2023) “Durable lithium-ion insertion/extraction and migration behavior of LiF-encapsulated cobalt- free lithium-rich manganese-based layered oxide cathode” Journal of Colloid and Interface Science 649: 175-184. DOI: 10.1016/j.jcis.2023.06.096.
[60] J. Im, K. Heo, S.-W. Kang, H. Jeong, J. Kim, and J. Lim, (2019) “LiFePO4 syn- thesis using refined Li3PO4 from wastewater in Li-ion battery recycling process” Journal of The Electrochemical Society 166(15): A3861. DOI: 10.1149/ 2.1331915jes.
[61] T. Hano, M. Matsumoto, T. Ohtake, N. Egashir, and F. Hori, (1992) “Recovery of lithium from geothermal water by solvent extraction technique” Solvent Extrac- tion and Ion Exchange 10(2): 195-206. DOI: 10.1080/07366299208918100.
[62] T. Punt, S. M. Bradshaw, P. Van Wyk, and G. Akdogan, (2022) “Phase Sepa- ration in a novel selective lithium extraction from citrate media with D2EHPA” Metals 12(9): 1400. DOI: 10.3390/met12091400.
[63] K. Kurniawan, S. Kim, H. Lee, M. Bae, H. Kim, and J.-c. Lee. “Leaching of critical metals from spent lithium-ion battery using acidic organophosphorus extractant”. In: TMS annual meeting & exhibition. Springer. 2024, 131-139. DOI: 10.1007/978-3-031-50236-1_14.
[64] Y. Song, L. He, Z. Zhao, and X. Liu, (2019) “Separation and recovery of lithium from Li3PO4 leaching liquor using solvent extraction with saponified D2EHPA” Separation and Purification Technology 229: 115823. DOI: 10.1016/j. seppur.2019.115823.
[65] Ksp Table. URL: https://www.chm.uri.edu/weuler/chm112/refmater/ KspTable.html.
[66] B. Han, R. A. U. Haq, and M. Louhi-Kultanen, (2020) “Lithium carbonate precip- itation by homogeneous and heterogeneous reactive crystallization” Hydromet- allurgy 195: 105386. DOI: 10.1016/j.hydromet.2020.105386.
[67] L. R. Velázquez, L. Palos, M. L. P. Mostefa, and H. Muhr, (2024) “Recovery of lithium from Li-ion battery leachate by gas-liquid precipitation” Journal of Crystal Growth 631: 127625. DOI: 10.1016/j.jcrysgro.2024.127625.
[68] M. Emmanuel, P. Papp, G. Schuster, Á. Deák, L. Janovák, Á. Tóth, and D. Horváth, (2022) “Nucleation kinetics of lithium phosphate precipitation” Crys- tEngComm 24(24): 4447-4453. DOI: 10.1039/D2CE00333C.
[69] Y.-J. Song, (2018) “Recovery of lithium as Li 3 PO 4 from waste water in a LIB recycling process” Korean Journal of Metals and Materials 56(10): 755-762. DOI: 10.3365/KJMM.2018.56.10.755.
[70] E. W. Rice, L. Bridgewater, A. P. H. Association, et al. Standard methods for the examination of water and wastewater. 10. American public health association Washington, DC, 2012.
[71] 水中金屬及微量元素檢測方法—感應耦合電漿原子發射光譜法 (NIEA W311.54C) | 水中金屬及微量元素檢測方法—感應耦合電漿原子發射光譜法 (NIEA W311.54C) | 國家環境研究院全球資訊網.
[72] 水中有機碳檢測方法—燃燒/紅外線測定法 (NIEA W530.51C) | 水中有 機碳檢測方法—燃燒/紅外線測定法 (NIEA W530.51C) | 國家環境研究院全球 資訊網.
[73] C.-W. Li, Y.-M. Chen, and S.-T. Hsiao, (2008) “Compressed air-assisted solvent extraction (CASX) for metal removal” Chemosphere 71(1): 51-58. DOI: 10. 1016/j.chemosphere.2007.10.050.
[74] M. M. Benjamin. Water chemistry. Waveland Press, 2014.
[75] N. Kim, X. Su, and C. Kim, (2021) “Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction” Chem- ical Engineering Journal 420: 127715. DOI: 10.1016/j.cej.2020.127715.
|
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信