| 系統識別號 | U0002-0707202522535400 |
|---|---|
| DOI | 10.6846/tku202500537 |
| 論文名稱(中文) | 航空站地勤業盤櫃拖曳車輛之路徑規劃 |
| 論文名稱(英文) | Unit Load Device Tugs Routing of Airport Ground Handling |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 運輸管理學系運輸科學碩士班 |
| 系所名稱(英文) | Department of Transportation Management |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 黃子芸 |
| 研究生(英文) | Tzu-Yun Huang |
| 學號 | 613660033 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-06-20 |
| 論文頁數 | 60頁 |
| 口試委員 |
指導教授
-
陳俊穎(cychen@mail.tku.edu.tw)
口試委員 - 湯慶輝(chtang@mail.ntou.edu.tw) 口試委員 - 顏子皓(tyan@nycu.edu.tw) |
| 關鍵字(中) |
機場地勤車輛 最佳化 時空網路 數學規劃 |
| 關鍵字(英) |
airport ground support equipment Optimization Time-space network Mathematical programing |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
貨櫃拖曳車輛的排程不僅需要規劃路線,還必須考量拖車拖曳貨櫃的數量限制,此問題與一般車輛途程問題明顯不同。近年來疫情復甦,機場地勤需求增加,使得此問題的規模變得更加複雜。若從系統最佳化的角度,透過電腦運算,所獲得的規劃結果不僅能夠縮短貨櫃處理時間及減少機場地面交通擁塞,同時還能在環保方面減少碳排放。目前台灣機場現況為單車單點人工調度之運送方式,較缺乏系統最佳化的調度策略,因此本研究將考量拖曳盤櫃數量限制以多點運送進行規劃,這種模式將隨著問題規模擴大而大幅減少燃料費用及縮短行車時間。為了能夠解決現今地球暖化日益嚴重的現象,減少溫室氣體以及節省能源消耗已經成為各國至關重要之議題,期盼未來能夠降地機場地勤車輛之能源消耗,以系統化之運送策略減少縮短行車路線。 雖然過去已有學者將最佳化方法應用於航空地勤相關問題,但多著重在人員班表、旅客行李運送或遠端機坪接駁車輛規劃等問題,因此將本研究基於桃園機場地勤業之立場,以地勤車輛拖曳盤櫃至停機坪之最少成本為目標,考量實際運營情況,利用整數數學規劃及時空網路流動技巧建立模式,並利用Python進行程式撰寫配合Gurobi最佳化軟體進行模式求解,最後並針對不同車隊數量、不同車輛及盤櫃停等成本、不同盤櫃數量、不同出車成本進行敏感度分析,結果顯示本研究模式為一有效的輔助工具,期望能改善機場龐大貨運量之下之路徑規劃。 |
| 英文摘要 |
The scheduling of container tugs involves not only route planning but also the constraint on the number of containers each tug can tow, making it significantly different from traditional vehicle routing problems. With increasing demand in airport ground operations post-pandemic, the problem has grown more complex.From a system optimization perspective, computer-based planning can shorten handling times, reduce ground traffic congestion, and lower carbon emissions. Currently, Taiwan airports rely on manual single-tug, single-point dispatching, lacking optimized strategies. This study proposes a multi-point dispatch model that considers container limits per tug, aiming to reduce fuel costs and travel time as the problem size increases.Given global concerns over climate change, energy saving and emission reduction are critical goals. A systematized dispatch strategy is expected to lower energy use for GSE at airports by optimizing travel routes. While past research has applied optimization to ground operations, it often focuses on staff scheduling, baggage handling, or shuttle planning. This study targets cost minimization for towing containers to aircraft stands at Taoyuan Airport. It incorporates real operational constraints using integer programming and time-space network flow models, used Python programming language and Gurobi optimization software to solve the proposed models, The results show that proposed model is an effective auxiliary tool, which is expected to improve the route planning under the huge cargo volume of airports. |
| 第三語言摘要 | |
| 論文目次 |
目錄 目錄 I 圖目錄 III 表目錄 V 第一章 緒論 1 1.1研究背景與研究動機 1 1.2研究目的 3 1.3現況分析與研究範圍 3 1.4研究流程 6 第二章 文獻回顧 8 2.1機場地勤車輛指派及調度相關文獻 8 2.2車輛途程問題相關文獻 10 2.3網路流動技巧相關文獻 11 2.4其他路線規劃問題文獻 12 2.5小結 14 第三章 模式構建 15 3.1問題描述 15 3.2模式基本條件或已知資訊 17 3.3模式架構 18 3.3.1拖曳車時空網路 18 3.3.2出口盤櫃時空網路 20 3.3.3進口盤櫃時空網路 22 3.4建構數學定式 24 第四章 實證分析 28 4.1模式測試與結果分析 28 4.1.1輸入資料與輸出資料 28 4.2小規模測試 29 4.3基本範例測試 33 4.3.1參數設定 33 4.3.2基本範例測試 34 4.4敏感度分析 35 4.4.1車輛數之敏感度分析 36 4.4.2盤櫃停等成本之敏感度分析 41 4.4.3出口盤櫃數量之敏感度分析 44 4.4.4進口盤櫃數量之敏感度分析 47 4.4.5出車成本改變之敏感度分析 50 第五章 結論與建議 53 5.1結論 53 5.2建議 55 參考文獻 57 圖目錄 圖1.1拖曳車與平車圖 4 圖1.2機場配置圖 6 圖1.3本研究流程圖 7 圖3.1單車單點規劃方式之示意圖 15 圖3.2考量系統最佳化規劃方式之示意圖 16 圖3.3拖曳車時空網路示意圖 20 圖3.4出口盤櫃時空網路示意圖 22 圖3.5進口盤櫃時空網路示意圖 24 圖4.1小規模範例之進出口盤櫃裝卸資料 30 圖4.2小規模範例之車輛移動資料 30 圖4.3小規模範例之路徑圖1 31 圖4.4小規模範例之路徑圖2 32 圖4.5車輛數改變之敏感度分析趨勢圖 38 圖4.6盤櫃停留成本之敏感度分析變化趨勢圖 42 圖4.7盤櫃停留成本對進出口盤櫃之敏感度分析趨勢圖 42 圖4.8出口盤櫃數量之模式規模變化趨勢圖 45 圖4.9出口盤櫃數量之敏感度分析結果趨勢圖 45 圖4.10進口盤櫃數量模式規模趨勢圖 48 圖4.11進口盤櫃數量之敏感度分析結果變化趨勢圖 48 圖4.12出車成本之敏感度分析結果變化趨勢圖 52 表目錄 表4-1小樣本範例測試之模式規模與求解結果 35 表4-2車輛數之敏感度分析 39 表4-3盤櫃停等成本之敏感度分析 43 表4-4出口盤櫃數量之敏感度分析 46 表4-5進口盤櫃數量之敏感度分析 49 表4-6出車成本之敏感度分析 51 |
| 參考文獻 |
參考文獻 交通部民用航空局(2023),各機場營運狀況統計資料。檢自https://www.caa.gov.tw/article.aspx?a=1736 &lang=1 朱經武、吳朝升、許秀麗 (2018),「具時窗多趟次車輛途程問題與委託零擔貨運服務之模式」,航運季刊,27(1),頁21-38。 沈宗緯、洪迎哲、林雨萱 (2019),「最鄰近點為準之集群調整法於求解具容量限制之車輛途程問題」,運輸學刊,31(4),頁449-480。 桃園航勤(2023),桃園航勤官方網站。檢自 https://www.tias.com.tw/ 財團法人工業技術研究院(2022),桃園機場導入電動地勤車(行李拖車與客貨車) 之專案計畫書(修正稿2.0版)。 張小雨(2007),「空廚業餐車派遣問題之研究」,長榮大學,航運管理研究所,碩士倫文。 陳俊穎、許芳瑜、蕭筑云、徐學鴻 (2021),「最佳化航機指派網路模式之研究」,運輸學刊,33(3),頁311-332。 劉姿君 (2012),「不同付款方式在多重作業方式及資源限制下專案排程最佳化模式之研究」,國立中央大學,土木工程研究所,碩士論文。 衡紅軍、宴曉東、王芳、李海豐 (2019),「基於多目標優化的機場行李運輸車輛調度問題研究」,中華民航大學計算機科學與技術學院。 謝季佑 (2011),「螞蟻演算法應用於駁運式排程問題」,國立陽明交通大學,運輸與物流學系,碩士論文。 韓復華、朱佑旌、林致瑄 (2016),「粒子群最佳化巨集啟發式方法求解多貨艙車輛路線問題之研究」,運輸計劃季刊,45(2),頁101-132。 Airports Council International (2023), ACI Word official website, Retrieved November 25, 2023. from https://aci.aero/2023/04/05/international-travel-returns-top-10-busiest-airports-in-the-world-revealed/ Alif, A., Garside, A.K., Amallynda, I., and Ramadhani, B.N.I.F. (2022), “Solving capacitated vehicle routing problem using football game algorithm,” Jurnal Ilmiah Teknik Industri, 21(1), p.27-36. Chen, C.Y. and Huang, I.R. (2025), “The optimal dispatch model for aviation fuel vehicles in refueling operations,” Proceedings of the Institution of Civil Engineers – Transport, 178(1), P.22-31. Chen, C.Y. and Schonfeld, P. (2022), “Unit load device reassignment following temporary airport closures,” International Journal of Shipping and Transport Logistics, 15(3/4), p.239-254. Chen, C.Y., Yan, S., and Tseng, H.T. (2020), “A model with a solution algorithm for the improvement of an existing bikeway network,” Proceedings of the Institution of Civil Engineers - Municipal Engineer, 173(1), p.3-13. Djunaidi, A.V. and Juwono, C.P. (2018), “Football Game Algorithm Implementation on the Capacitated Vehicle Routing Problems,” International Journal of Computing Algorithm, 7(1), p.45-53. Du, Y., Zhang, Q., and Chen, Q. (2008), “ACO-IH: an improved ant colony optimization algorithm for airport ground service scheduling,” IEEE International Conference on Industrial Technology, p.1-6. Fadakar, E. and Ebrahimi, M.(2016), “A new metaheuristic football game inspired algorithm,” 2016 1st conference on swarm intelligence and evolutionary computation, p.6–11. Galina, I., Sabine, L., and Fouad, R. (2017), “The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains,” International Journal of Production Economics, 183, p.570-582. Guo, W., Xu P., Zhao Z., Wang L., Zhu L., and Wu, Q. (2020), “Scheduling for airport baggage transport vehicles based on diversity enhancement genetic algorithm,” Natural Computing: An International Journal. 19(4), p.663-672. Huang, S.H., Huang, Y.H., Blazquez, C.A., and Chen, C.Y. (2022), “Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm,” Advanced Engineering Informatics, 51, p.101536. Khaled, A., Aboubakeur, H., and Abdelhamid, R. (2019), “Particle swarm optimization for route planning of unmanned aerial vehicles,” Journal of Electrical Systems and Materials, 1(1), p.10-20 Lai, Y., Chen, Y., Rocío, D.O., and Oña, R.E. (2023), “Collaborative optimization model for the design and operation of feeder bus routes based on urban metro,” Journal of Advanced Transportation, Vol.2023, p.1-12. Norin, A., Granberg, T.A., Yuan, D., and Värbrand, P. (2012), “Airport logistics – a case study of the turn-around process,” Journal of Air Transport Management, 20, p.31-34. Padrón, S., Guimarans, D., Ramos, J.J., and Trabels, S.F. (2016), “A bi-objective approach for scheduling ground-handling vehicles in airports,” Computers & Operations Research, 71, p.34-53. Pisinger, D. and Ropke, S. (2007), “A general heuristic for vehicle routing problems,” Computers & Operations Research, 34 (8), p.2403-2435. Surekha, P., and Sumathi, S. (2011), “Solution to multi-depot vehicle routing problem using genetic algorithms,” World Applied Programming, 1(3), p.118-131. Tang, G., Ning, A., Wang, K., and Qi, X. (2009), “A practical split vehicle routing problem with simultaneous pickup and delivery,” 16th International Conference on Industrial Engineering and Engineering Management, p.26-30. Volt, J., Stojić, S., and Had, P. (2022), “Optimization of the baggage loading and unloading equipment,” In Transportation Research Procedia, 65, P.246-255. Wang, H. F., and Chen, Y.Y. (2012), “A genetic algorithm for the simultaneous delivery and pickup problems with time window,” Computers & Industrial Engineering, 62(1), p.84-95. Wang, S., Che, Y., Zhao, H., Lim, A. (2021), “Accurate tracking, collision detection, and optimal scheduling of airport ground support equipment,” IEEE Internet of Things Journal, 8(1), p.572-584. Wang, X., Shi, H., and Zhang, C. (2020), “Path planning for intelligent parking system based on improved ant colony optimization,” IEEE Access, 8, p.65,267-65,273. Wang, Z., and Sheu, J.B. (2019) “Vehicle routing problem with drones,”. Transportation Research Part B: Methodological, 122 p.350-364. Xing, Z., and Lian, G. (2012), “Cooperative game theoretical research for aircraft deicing operation scheduling,” Proceedings of the 10th World Congress on Intelligent Control and Automation, IEEE, p.2407–2411. Yan, S., Tang, C.H., and Fu, T.C. (2008), “An airline scheduling model and solution algorithms under stochastic demands,” European Journal of Operational Research, 190, p.22-39. Zhang, C., Zhen, Z., Wang, D., and Li, M. (2010), “UAV path planning method based on ant colony optimization,” 2010 Chinese Control and Decision Conference, p.3,790-3,792. Zhang, Z., Che, Y., and Liang, Z. (2024), “Split-demand multi-trip vehicle routing problem with simultaneous pickup and delivery in airport baggage transit,” European Journal of Operational Research, 312(3), p.996-1010. Zhao, P., Gao, W., Han, X., and Luo, W.H. (2019), “Bi-objective collaborative scheduling optimization of airport ferry vehicle and tractor,” International Journal of Simulation modeling, 18(2), p.161607–161620. Zhao, P., Han, X., and Wan, D. (2021), “Evaluation of the airport ferry vehicle scheduling based on network maximum flow model,” Omega (Oxford), 99, p.102178. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信