系統識別號 | U0002-0705202513220400 |
---|---|
DOI | 10.6846/tku202500149 |
論文名稱(中文) | 比特幣價格預測之誤差評估與模型比較:基於跳躍擴散GBM與機器學習方法的實證研究 |
論文名稱(英文) | ERROR EVALUATION AND MODEL COMPARISON FOR BITCOIN PRICE PREDICTION: AN EMPIRICAL STUDY BASED ON JUMP-DIFFUSION GBM MODEL AND MACHINE LEARNING APPROACHES |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 經濟學系經濟與財務碩士班 |
系所名稱(英文) | Master's Program in Economics and Finance, Department of Economics |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 113 |
學期 | 2 |
出版年 | 114 |
研究生(中文) | 莊智傑 |
研究生(英文) | Chih-Chieh Chuang |
學號 | 612570134 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2025-06-11 |
論文頁數 | 54頁 |
口試委員 |
指導教授
-
林彥伶(yenling@mail.tku.edu.tw)
口試委員 - 池秉聰 口試委員 - 簡文政 |
關鍵字(中) |
比特幣價格預測 跳躍擴散模型 長短期記憶 誤差評估 區間涵蓋率 |
關鍵字(英) |
Bitcoin price prediction Jump Diffusion Model Long Short-Term Memory Error Evaluation Prediction Interval |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本研究探討不同模型在比特幣市場價格預測中的適用性與誤差表現,選用跳躍擴散模型(Jump Diffusion Model, JDM)與長短期記憶網路模型(Long Short-Term Memory, LSTM)進行比較分析。研究資料採用2020年3月至2024年11月之比特幣每小時價格,並劃分為全時段市場與盤整市場兩種樣本條件,以觀察模型在不同波動性環境下的行為差異。JDM為結構模型,模擬價格分布並產出預測區間;LSTM則為資料驅動模型,進行逐點預測並藉由教師引導抑制遞迴誤差擴散。本研究依據模型特性設計對應誤差衡量指標,分別以涵蓋率、區間寬度與點估誤差作為評估基準。實證結果指出:JDM能合理捕捉價格分布的極端變異,特別適用於區間預測需求;而LSTM在資訊維度充足與穩定條件下具備較佳點估準確度。兩者各具強項,並應依預測目標與市場狀態進行選擇與應用。本研究亦針對市場高峰度、偏態與跳躍特徵提供統計驗證,並強調JDM預測結果應從整體分布觀點解釋,而非單次模擬。整體而言,本研究建立一套可兼顧理論可解釋性與資料彈性的比較分析架構,提供後續模型應用與實務操作之參考。 |
英文摘要 |
This study compares the forecasting performance of the Jump Diffusion Model (JDM) and Long Short-Term Memory (LSTM) in predicting Bitcoin prices using hourly data from March 2020 to November 2024. The analysis distinguishes between full-market and sideways-market periods. JDM simulates price distributions to generate prediction intervals, while LSTM conducts point forecasts with teacher forcing to reduce recursive error. Results show JDM is effective for interval-based risk assessment, whereas LSTM performs better in stable conditions. The study emphasizes interpreting JDM outcomes from a distributional view rather than individual paths, and provides a framework for model selection across varying market conditions. |
第三語言摘要 | |
論文目次 |
第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究方法 3 第三節 研究流程 5 第二章 文獻回顧 7 第一節 機器學習方法與加密資產預測應用 7 2.1.1門控循環單元(GRU) 8 2.1.2變壓器模型(Transformer) 9 2.1.3長短期記憶網路模型(LSTM) 10 第二節 傳統金融模型於加密貨幣市場的適用性 13 2.2.1 GARCH (Generalized Autoregressive Conditional Heteroskedasticity) 13 2.2.2 向量誤差修正模型(VECM) 14 2.2.3幾何布朗運動(Geometric Brownian Motion, GBM) 15 2.2.4 跳躍擴散模型(Jump Diffusion Model, JDM) 16 2.2.5 小結 17 第三章 研究方法 19 第一節 幾何布朗運動模型(GBM) 19 第二節 跳躍擴散模型(JDM) 20 第三節 機器學習模型設計與應用說明 21 3.3.1特徵選擇與設計邏輯 22 3.3.2 長短期記憶網路模型(LSTM)架構 22 第四節 誤差評估方法 24 3.4.1 預測區間涵蓋率 24 3.4.2 預測區間寬度 24 3.4.3 點估預測誤差指標 25 第五節 資料敘述統計 26 第四章 實證結果 27 第一節 JDM 模型之參數估計與預測結果分析 28 4.1.1 模型參數估計結果與市場異質性分析 29 4.1.2 模擬預測結果與涵蓋表現分析 30 4.1.3 涵蓋率統計結果分析 33 4.1.4平均預測區間寬度分析 35 4.1.5預測涵蓋與效率表現總結 36 第二節 LSTM模型之預測誤差分析 37 4.2.1 LSTM模型建構與參數設定 37 4.2.2 LSTM預測誤差比較分析 38 4.2.3 JDM與LSTM模型預測表現 44 第五章 結論與建議 45 第一節 結論 45 第二節 研究貢獻 46 第三節 研究限制與反思 47 參考文獻 49 中文文獻 49 英文文獻 49 圖目錄 圖 1: 2020~2024比特幣價格時間段 4 圖 2:全時段市場的蒙地卡羅方法7日預測 31 圖 3:盤整市場的蒙地卡羅方法7日預測 31 圖 4:全時段市場的蒙地卡羅方法31日預測 32 圖 5:盤整市場的蒙地卡羅方法31日預測 32 圖 6:全時段市場使用2特徵的7日預測 39 圖 7:全時段市場時段使用6特徵的7日預測 39 圖 8:全時段市場使用2特徵的31日預測 40 圖 9:盤整市場使用6特徵的31日預測 40 圖 10:盤整市場使用2特徵的7日預測 41 圖 11:盤整市場使用6特徵的7日預測 41 圖 12:盤整市場使用2特徵的31日預測 42 圖 13:盤整市場使用6特徵的31日預測 42 表目錄 表 1:比特幣價格資料之敘述統計 26 表2:±2Σ與±1.5Σ之差異 29 表3: JDM不同時段下的歷史平均參數 30 表 4:不同市場條件與預測期間下的區間涵蓋率統計 34 表 5:不同市場條件與預測期間下的平均預測區間寬度 35 表 6:不同市場條件與預測期間下的預測效率 35 表 7:不同特徵之誤差比較(全時段7日) 39 表 8:不同特徵之誤差比較(全時段31日) 40 表 9:不同特徵之誤差比較(盤整市場7日) 41 表 10:不同特徵之誤差比較(盤整市場31日) 42 表 11:不同特徵之誤差比較(全時期) 43 |
參考文獻 |
中文文獻 蔡佩珊 (2023)。以長短期記憶網路預測加密貨幣投資風險。碩士論文,國立中興大學企業管理學系。 英文文獻 Alvi, J., Nizam, K., Rehan, M., & Ali, M. M. (2024). Cryptocurrency predictive analytics: A comparative study of LSTM, CNN, and GRU models. Pakistan Business Review, 26(3), 481–493. Bai, L., Yao, L., Kanhere, S., Wang, X., & Sheng, Q. (2019). STG2Seq: Spatial-temporal graph to sequence model for multi-step passenger demand forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 1981–1988. Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. Journal of Finance, 61(4), 1645–1680. Bandi, F. M., & Nguyen, T. H. (2003). On the functional estimation of jump-diffusion models. Journal of Econometrics, 116(1–2), 293–328. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. Chen, C. Y. H., & Hafner, C. M. (2019). Sentiment-induced bubbles in the cryptocurrency market. Journal of Risk and Financial Management, 12(2), 53. Chen, Y., Li, Z., & Wang, Y. (2020). Time-series prediction of commodity prices using hybrid ARIMA and LSTM models. Resources Policy, 66, 101608. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555. Ciaian, P., Rajcaniova, M., & Kancs, A. (2018). Virtual relationships: Price cointegration of bitcoin with other assets. Applied Economics, 50(18), 1950–1963. Corbet, S., Lucey, B., & Yarovaya, L. (2018). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81–88. Das, J. D., Thulasiram, R. K., & Henry, C. (2024). Encoder–decoder based LSTM and GRU architectures for stocks and cryptocurrency prediction. Journal of Risk and Financial Management, 17(5), Article 200. Di Persio, L., & Honchar, O. (2017). Artificial neural networks architectures for stock price prediction. International Journal of Circuits, Systems and Signal Processing, 11, 317–324. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica, 50(4), 987–1007. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669. Frame, S. J., & Ramezani, C. A. (2014). Asymmetric affine jump-diffusion models with application to cryptocurrencies. Applied Economics Letters, 21(15), 1052–1055. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. Hilliard, J., & Ngo, T. (2022a). Cryptocurrency option pricing with jump diffusion models. Review of Derivatives Research, 25(1), 1–29. Hilliard, J. E., & Ngo, J. T. D. (2022b). Bitcoin: Jumps, convenience yields, and option prices. Quantitative Finance, 22(11), 2079–2091. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In S. C. Kremer & J. F. Kolen (Eds.), A field guide to dynamical recurrent neural networksm, 237-243. IEEE Press. Hu, J., Härdle, W. K., & Kuo, R. (2019). Risk of Bitcoin market: Volatility, jumps, and forecasts. IRTG 1792 Discussion Paper Series, 2019-2024. Humboldt University of Berlin. Ignatieva, K., & Wong, B. (2024). Nonlinear jump diffusion modeling in crude oil markets. Energy Economics, 108, 105904 Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254. John, D. L., Binnewies, S., & Stantic, B. (2024). Cryptocurrency price prediction algorithms: A survey and future directions. Preprints, 2024061864. Konte, M. A., & Aduda, J. (2021). Jump diffusion processes in bitcoin valuation: Empirical evidence from DEJD. Journal of Financial Innovation, 7(1), 1–15. Kou, S. G. (2007). Jump-diffusion models for asset pricing in financial engineering. Handbooks in Operations Research and Management Science, 15, 73-116. Lee, S. S., & Hannig, J. (2010). Detecting jumps from Lévy processes. Journal of Econometrics, 157(2), 231–241. Lee, S., Kim, K., & Park, J. (2008). Volatility smile modeling with jump-diffusion models: Evidence from Japanese stock options. Asia-Pacific Financial Markets, 15(3), 225–245. Li, H., Wells, M. T., & Yu, C. L. (2008). A Bayesian analysis of jump-diffusion models using Lévy processes. Journal of Financial Econometrics, 6(1), 1–30. Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural Computing and Applications, 32, 17351–17360. Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting. International Journal of Forecasting, 37(4), 1748–1764. Lu, B. L., Liu, Z. H., Wei, H. L., et al. (2021). Adversarial LSTM for robust forecasting under data perturbation. Knowledge-Based Systems, 231, 107403. Mahdi, E., Martin-Barreiro, C., & Cabezas, X. (2025). A novel hybrid approach using an attention-based Transformer + GRU model for predicting cryptocurrency prices. Mathematics, 13(9), Article 1484. Mensi, W., Rehman, M. U., & Kang, S. H. (2020). Time-frequency co-movements between energy commodities and global financial indicators: Implications for risk management amid COVID-19 pandemic. Resources Policy, 69, 101872. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1–2), 125–144. Michańków, P., Kliber, A., & Śmiech, S. (2022). Forecasting bitcoin and S&P500 returns using deep learning models. Finance Research Letters, 45, 102375. Mozaffari, L. (2024). Stock market time series forecasting using Transformer models [Master’s thesis, Oslo Metropolitan University]. OsloMet ODA. Mpinda, M., & Rodrigues, G. (2022). Predicting financial market volatility using recurrent neural networks. Journal of Forecasting, 41(2), 238–251. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Singh, A. (2024). Utilizing Transformer models and graph neural networks for timestamp-based cryptocurrency price prediction: A deep learning approach [Master’s thesis, Dublin Business School]. DBS eSource. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958. Taieb, S. B., & Bontempi, G. (2011). A bias-variance analysis for multi-step-ahead time series forecasting. In P. Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition: 7th International Conference, MLDM 2011 (pp. 11–25). Springer. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3), 1139–1168. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998-6008. Wang, T., Li, G., Skulstad, R., & Zhang, H. (2024). Short-term ship roll motion prediction using the encoder–decoder Bi-LSTM with teacher forcing. Ocean Engineering, 295, 116917. Yi, S. (2018). Speculative bubbles in the cryptocurrency market: An empirical investigation. Finance Research Letters, 26, 5–13. Yuan, Y., Lin, L., Huo, L. Z., et al. (2020). Using an attention-based LSTM encoder–decoder network for near real-time disturbance detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1819-1830. Zhang, C., Sjarif, N. N. A., & Ibrahim, R. (2024). 1D-CapsNet-LSTM: A deep learning-based model for multi-step stock index forecasting. Journal of King Saud University - Computer and Information Sciences, 36, 101959. Zhang, W., Wang, P., Li, X., & Shen, D. (2024). Sentiment-enhanced deep learning models for cryptocurrency volatility forecasting. Applied Soft Computing, 135, 110060. Zhao, Y., Guo, Y., & Wang, X. (2025). Hybrid LSTM–Transformer architecture with multi-scale feature fusion for high-accuracy gold futures price forecasting. Mathematics, 13(10), Article 1551. Zhuang, Y., Almeida, M., Ding, W., & Flynn, P. D. (2022). Widening the time horizon: Predicting the long-term behavior of chaotic systems. In Proceedings of the 2022 IEEE International Conference on Data Mining (ICDM) , 1177-1182. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信