§ Browsing ETD Metadata
  
System No. U0002-0609201612090200
Title (in Chinese) 利用公克級機載航電元件之半自主拍翼飛控
Title (in English) Semi-autonomous flight control of an ornithopter using gram-size airborne avionics
Other Title
Institution 淡江大學
Department (in Chinese) 機械與機電工程學系碩士班
Department (in English) Department of Mechanical and Electro-Mechanical Engineering
Other Division
Other Division Name
Other Department/Institution
Academic Year 104
Semester 2
PublicationYear 105
Author's name (in Chinese) 林侑廷
Author's name(in English) Yow-Ting Lin
Student ID 603350249
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2016-06-14
Pagination 69page
Committee Member advisor - Lung-Jieh Yang 楊龍杰
co-chair - 李其源
co-chair - 蕭照焜
Keyword (inChinese) 拍翼式微飛行器
半自主飛行控制
Arduino 嵌入式系統
Keyword (in English) Flapping Wing micro-air-vehicle (FWMAV)
Semi-autonomous Flight Control
Arduino Embedded System
Other Keywords
Subject
Abstract (in Chinese)
本研究使用可搭載在全機15克級微飛行器上的機載航電元件,結合感測器與其他相關模組搭載於拍翼飛行器上,進行半自主的拍翼飛行控制。本研究使用之M1AP 是一個多功能可編寫並且可連接Arduino 平台的晶片,其整合ATmeg328P 微處理器、慣性量測單元和高度感測器,整體晶片模組重量僅有1.20 克重,並且包含了有I2C 的數位輸入和輸出、模擬輸入和輸出,文內針對M1AP之設計以及搭載於拍翼飛行器上的飛行任務進行規劃與設定。主要設定兩個任務:其一為光控起飛,經實際組裝飛行,已可從地面感測外部光源並觸發自行起飛。另一任務為巡航飛行,透過方向控制來使拍翼飛行器於規定時間內做出預定之飛行任務,實地測試初步已可做出自行來回巡航任務,但就立體攝影分析之三維飛行軌跡結果顯示,來回一次之方向累積誤差約20度,未來仍有改善空間。
Abstract (in English)
This research presents a gram-size airborne avionics for flapping wing micro air vehicles(FWMAVs). Combined with other relevant sensor module mounted in the film wing aircraft up to the semi-autonomous flapping flight control.
Regrading the 15-gram weight flapping wing micro air vehicles(FWMAV),this study presents the application of the M1AP chip developed by Tamkang university in 2015 to the semi autonomous flight control accordingly. M1AP chip combines the Atmega micro-controller-unit(MCU)which is Arduino-embedded and some MEMS sensors including inertial-measurement-unit(IMU),compass and pressure sensor. The total weight of M1AP only 1.2gram and with I2C digital input/output part. Two flight tests including orientation control and light-trigger takeoff are demonstrated successfully.
The former orientation control allows the FWMAV to do the to-and-fro cruising in a pre-programed manner. Through the 3D stero-photography checking, the orientation deviation after 1 round of to-and-fro is about 20°
Other Abstract
Table of Content (with Page Number)
目錄
第一章 緒論	1
1-1研究背景	1
1-2 文獻回顧	3
1-3 研究目的	7
第二章 飛行控制元件	8
2-1 機載航電元件	8
2-1-1 M1AP	8
2-1-2電路板印刷設計	10
2-1-3 ATmega328P Microcontroller	12
2-1-4 LSM9DS0	13
2-1-5 BMP180	13
2-2 M1AP使用	14
2-2-1連接電腦	14
2-2-3數據讀取	15
第三章 拍翼機半自主飛行控制	18
3-1 硬體架構	18
3-2 拍翼飛行器	19
3-2-1金探子	20
3-2-2 雙翼機構	21
3-3 光控起飛	23
3-3-1光敏電阻	23
3-3-2馬達控制	23
3-3-3 控制晶片組裝	24
3-3-4 光控程式流程	25
3-3-5 組裝及飛行測試	26
3-4 巡航飛行	28
3-4-1 控制晶片組裝	29
3-4-2巡航程式流程	30
3-4-3飛行測試	31
3-4-4飛行方向測試	41
3-4-5飛行軌跡	41
3-5高度控制	43
3-5-1壓力計測試	43
3-5-2算術平均濾波	45
3-5-3實際飛行測試	45
第四章 結論與改善方向	47
4-1 結論	47
4-2改進方向	48
參考文獻	49
附錄	52


圖目錄
圖1-1 Nano hummingbird 	3
圖1-2 Robobees蒼蠅拍翼微飛行器	4
圖1-3利用立體視覺使飛行器於一定高度進行飛行	5
圖1-4 DelFly	6
圖1-5 4克立體視覺晶片	6
圖1-6利用磁力計使飛行器往固定方向飛行	6
圖1-7利用氣壓計使其飛行器飛至一定高度	7
圖2-1 M1AP	9
圖2-2引腳分配	9
圖2-3 EAGLE PCB Design Software原理圖介面	11
圖2-4 EAGLE PCB Design Software 印刷版介面	11
圖2-5 ATmega328P	12
圖2-6 LSM9DS0九軸傳感器	13
圖2-7 BMP180	13
圖2-8控制元件與電腦連接	14
圖2-9俯仰(pitch)數據	15
圖2-10桶滾(roll)數據	16
圖2-11偏航(heading)數據	16
圖2-12高度數據	17
圖3-1控制元件使用機制	18
圖3-2拍翼機構(a)單翼(b)雙翼	19
圖3-3實驗用飛行器	19
圖3-4金探子	21
圖3-5重心於機體尾部	22
圖3-6重心於機身	22
圖3-7光敏電阻	23
圖3-8光感應組裝示意圖	25
圖3-9光控開關流程	26
圖3-10機身配置圖	26
圖3-11光感應地面起飛	27
圖3-12光控起飛動作	27
圖3-13尾舵	28
圖3-14小馬達	28
圖3-15定方向判定範圍	29
圖3-16各部件組裝示意圖	29
圖3-17晶片位置	30
圖3-18來回巡航流程圖	31
圖3-19往第一個方向飛行	32
圖3-20往第二個迴轉後返回飛行	33
圖3-21來回巡航	34
圖3-22第一次飛行任務軌跡	34
圖3-23飛行時間0~6秒	35
圖3-24飛行時間6~14秒	36
圖3-25飛行時間14~20秒	37
圖3-26前8秒飛行軌跡	38
圖3-27飛行軌跡9~12秒	39
圖3-28飛行軌跡13~20秒	39
圖3-29飛行軌跡	40
圖3-30對照第一組及第二組飛行軌跡	40
圖3-31方向感測靜置測試	41
圖3-32飛行軌跡	42
圖3-33均值處理後之飛行軌跡	42
圖3-34飛行軌跡俯視圖	42
圖3-35靜置測試	43
圖3-36高度1公尺	44
圖3-37高度變動比較	44
圖3-38濾波數值圖	45
圖3-39低於標準紅線加速上升	46
圖3-40過高於標準紅線則降低	46
圖3-41飛行器保持於標準紅線上1公尺左右之高度	46
圖4-1 可裝載M1AP機身初步構想	48


表目錄
表2-1 ATmega328P規格	12
表3-1單翼負重分配	20
表3-2雙翼負重分配	21
References
[1] D. Mellinger, M. Shomin, and V. Kumar, “Control of quadrotors for robust perching and landing,” Proceedings of the International Powered Lift Conference, Oct 2010
[2] N. Michael, J. Fink, and V. Kumar, “Cooperative [1] D. Mellinger, M. Shomin, and V. Kumar, “Control of quadrotors for robust perching and landing,” Proceedings of the International Powered Lift Conference, Oct 2010
[2] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1, pp.73–86, Jan 2011
[3] U. Pesavento and Z. J. Wang, “Flapping wing flight can saveaerodynamic power compared to steady flight,” Physical Review Letter, vol.103, no. 11, p. 118102, September 2009
[4] T. W. Akira Azuma, Flight Performance of a Dragonfly. Journal Experimental Biology 137, 221-252, July 1988
[5] J.V. Caetano, J. Verboom, C.C. de Visser, G.C.H.E. de Croon, B.D.W. Remes, C. de Wagter, and M. Mulder, "Near-hover flapping wing MAV aerodynamic modelling - a linear model approach", International Journal of Micro Air Vehicles, volume 5, number 4, 2014
[6] G.C.H.E. de Croon, Groen M.A.C., De Wagter B.D.W. Remes, R. Ruijsink, and B.W. van Oudheusden, "Design, aerodynamics, and autonomy of the DelFly" Bioinspiration and Biomimetics, volume 7, number 2, 2014
[7] 徐振貴,「拍翼式微飛行器之設計、製造與測試整合」,淡江大學機械與機電工程學系碩士論文,2008年。 
[8] 高崇瑜,「應用精密模造技術於微飛行器套件組之設計與製造」,淡江大學機械與機電工程學系碩士論文,2009年。
[9] L.J. Yang, C.Y. Kao, and C.K. Huang, “Development of flapping ornithopters by precision injection molding,” Applied Mechanics and Materials, vol. 163, pp. 125-132, 2012.
[10] 廖俊瑋,「翼展10公分之拍翼式微飛行器研製」,淡江大學機械與機電工程學系碩士論文,2009年。
[11] 鄭杰明,「仿蜂鳥懸停機構初探」,淡江大學機械與機電工程學系碩士論文,2013年。
[12] 洪堃銓,「仿蜂鳥懸停機構套件之設計與製造」,淡江大學機械與機電工程學系碩士論文,2014年。
[13] 蘇希德,「15克重微飛行器之機載航電元件開發」,淡江大學機械與機電工程學系碩士論文,2015年。
[14] B. M. Finio, N. O. P. Arancibia, and R. J. Wood, “System identification and linear time-invariant modeling of an insect-sized 67 flapping-wing micro air vehicle”, 2011 IEEE lRSJ International Conference on Intelligent Robots and Systems September 25-30, 2011.
[15] S. Ashley, “Palm-size spy plane,” Am. Soc. Mech. Eng, Vol. 74-78, 1998.
[16] Matthew Keennon et al., “Tailless flapping wing propulsion and control development for the Nano Hummingbird micro air vehicle,” American Helicopter Society Future Vertical Lift Aircraft Design Conference, Jan. 18-20, 2012, San Francisco, California.
[17] Z. Jane Wang and D. Russell, "Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight," Physical Review Letters, vol.99, no. 14,no. 148101,2007
[18] M. Karasek, I. Romanescu and A. Preumont,"Pitch moment generation and measurement in a robotic Hummingbird, " International Journal of Micro Air Vehicles (IMAV 2013), vol. 5, issue 4, p299, 2013
[19] F.Y. Hsiao, L.J. Yang, S.H. Lin, C.L. Chen, and J.F. Shen, “Autopilots for ultra lightweight robotic birds”, IEEE Control Systems Magazine, Volume 32, pp.35-48, October 2012
[20] C. De Wagter, S. Tijmons, B.D.W. Remes, and G.C.H.E. de Croon "Autonomous flight of a 20-gram flapping wing MAV with a 4-gram onboard stereo vision system", Robotics and Automation (ICRA), 2014
[21] U.S. Department of Transportation , Instrument Flying Handbook, Federal Aviation Administration
[22] Arduino Single-Sided Serial Board (version 3). Retrieved March 6, 2016,fromhttps://www.arduino.cc/en/Main/ArduinoBoardSerialSingleSided3
[23] Shawn Wallace , “Make Your Own D*mn Board”, Make: , from http://makezine.com/projects/make-36-boards/make-your-own-dmn-board-part-1-layout/

[24]  K.R. Britting, “Inertial navigation systems analysis”, Boston : Artech House, 2010
[25] S.O.H. Madgwick, A.J.L. Harrison, R. Vaidyanathan. “Estimation of IMU and MARG orientation using a gradient descent algorithm’’ IEEE 2011 International Conference on Rehabilitation Robotics, Zurich, Switzerland, pp.1-7, 2011
[26] 高敏維,「微拍翼機可撓翼之氣動力實驗」,淡江大學機械與機電工程學系碩士論文,2008年六月。
[27] L.J. Yang, C.K. Hsu, H.C. Han, J.M. Miao, “Light flapping micro-aerial-vehicle using electrical discharge wire cutting technique,” Journal of Aircraft, vol. 46(6), pp. 1866-1874, 2009.  
[28] J. Ge, G. Song, J. Zhang, W. Wang, Z. Li and Y. Wang, "Prototype design and performance test of an in-phase flapping wing robot, "IEEE International Symposium on Industrial Electronics (ISIE 2013), Taipei, Taiwan, May 2013, pp. 1- 6.
[29] L.J. Yang, S. Marimuthu, K.C. Hung, H.H. Ke, Y.T. Lin, and C.W. Chen, “Development scenario of micro ornithopters,” Journal of Aeronautics, Astronautics and Aviations, v. 47, n. 4, pp. 397-406, 2015.
[30] 葉難 : Arduino 範例分析與實作設計, 博碩出版, 4-1 節
[31] 楊明豐 : Arduino 最佳入門與應用, 碁峰出版
[32] Sankarasrinivasan S., Balasubramanian Esakki, Lung-Jieh Yang, Udayagiri Chandrasekhar, and Sarasu P., “A novel vision based protocol for controlling flapping wing vehicles in indoor surveillance mission,” Journal of Applied Science and Engineering, vol. 18, no. 4, pp. 331-338, 2015.
[33] 葉星志,「可撓拍翼之三維軌跡與二維流場探索」,淡江大學機械與機電工程學系碩士論文,2012年
[34] 黃奕澄,「微飛行器拍翼軌跡即時測定之研究」,淡江大學機械與機電工程學系碩士論文,2009年
Terms of Use
Within Campus
I request to embargo my thesis/dissertation for 3 year(s) right after the date I submit my Authorization Approval Form.
Duration for delaying release from 3 years.
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and I donate the fee to my school library as a development fund.
Duration for delaying release from 3 years.
 Top

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email