系統識別號 | U0002-0608200711171100 |
---|---|
DOI | 10.6846/TKU.2007.00211 |
論文名稱(中文) | 斑馬魚兩型肌肉調控因子MRF4a與MRF4b的分子結構,基因表現及生物功能 |
論文名稱(英文) | Molecular structure,spatiotemporal expression and biological functions of zebrafish muscle regulatory factors MRF4a and MRF4b |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 生命科學研究所碩士班 |
系所名稱(英文) | Graduate Institute of Life Sciences |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 95 |
學期 | 2 |
出版年 | 96 |
研究生(中文) | 李駿凱 |
研究生(英文) | Chun-Kai Li |
學號 | 693290362 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2007-07-19 |
論文頁數 | 62頁 |
口試委員 |
指導教授
-
陳曜鴻
委員 - 陳銘凱 委員 - 蔡惠珍 |
關鍵字(中) |
斑馬魚 肌肉調控因子 肌肉發育 |
關鍵字(英) |
Zebrafish MRFs mrf4 muscle development |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本實驗室先前的研究發現在斑馬魚體內有兩型MRF4 (MRF4 a和MRF4 b)存在,兩者蛋白質序列相似度達97%,接著利用mrf4 a和mrf4 b特異性核酸探針進行原位雜交實驗偵測兩型mrf4表現位置發現mrf4 a表現位置在olfactory placode、三叉神經 (trigeminal nerve) 和RB神經元 ;mrf4 b表現位置在體節上。接著我利用核酸類似物胚胎抑制劑 (morpholino)去分別抑制兩型或同時抑制兩型mrf4,再利用各種標定物以了解兩型mrf4在斑馬魚體內分工情形。首先利用肌肉標定物F59、α-actin、tnnt1、tnnt3b,進行免疫螢光染色和原位雜交實驗,結果發現mrf4 a morphant慢肌纖維排列不受影響,α-actin表現正常,mrf4 b被抑制會造成慢肌纖維排列混亂,α-actin表現下降,tnnt1及tnnt3b則有表現下降及表現情形混亂。接著我使用神經標定物aat (anti-acetylated tubulin)、Znp1、α-bungarotoxin、Zn5和Zn12一級抗體對兩型mrf4 morphant進行染色,發現mrf4 a morphant 上RB 神經元樹突生長數目變少且長度變短,二級運動神經發育受阻礙,而mrf4 b morphant中乙醯膽鹼接受體變少,一級運動神經生長受阻礙。综合以上結果我認為兩型mrf4功能有所不同,其中mrf4 a對於神經生長有較大相關性,而mrf4 b則和肌肉生長有較大相關性。 |
英文摘要 |
Our previous study shows that zebrafish has two MRF4 isoforms, MRF4 a and MRF4 b. The two MRF4 proteins exhibited a 97 % identity rate. To detect the spatiotemporal expression pattern of mrf4 a and mrf4 b at mRNA level, we used in situ hybridization. Our data showed mrf4 a expressed in trigeminal nerve, olfactory placode and RB (Rohon-beard) neuron. mrf4 b expressed in somite. To test the biological function of each mrf4, we first used anti-sense morpholino to knockdown mrf4 a and mrf4 b individually.Curved body were observed after knockdown. Then we used muscle markers F59, α-actin、tnnt1、tnnt3b,and neuron markers aat (anti-acetylated tubulin), Znp1, α-bungarotoxin, Zn5, Zn12 to detect morphological change of mrf4 morphant in skeletal muscle, slow muscle, fast muscle, motor neuron, innervations, acetylcholine receptor cluster and RB neuron. Our data shows mrf4 a knockdown led to RB neuron dendrite loss, motor neuron innervation, mrf4 b knockdown led to misalignment of slow muscle, α-actin, tnnt1, tnnt3b down reglation, secondary motorneuron defect. On the basis of our observations, we suggest that mrf4 a expression is involved in neuron development, mrf4 b expression is involved in muscle development. |
第三語言摘要 | |
論文目次 |
目錄 中文摘要----------------------------------------------------------------------------I 英文摘要---------------------------------------------------------------------------II 目 錄--------------------------------------------------------------------------III 圖表目錄--------------------------------------------------------------------------V 第一章 前言-----------------------------------------------------------------------1 第二章 材料與方法--------------------------------------------------------------7 第一節 斑馬魚飼養及胚胎收集(Danio rerio)-------------------------8 第二節 勝任細胞(Competent cell)製作及大腸桿菌之電轉型 (electroporation) --------------------------------------------------8 第三節 小量質體萃取-----------------------------------------------------8 第四節 胚胎固定及脫水--------------------------------------------------9 第五節 morpholino knockdown實驗-----------------------------------9 第六節 斑馬魚total RNA萃取-----------------------------------------10 第七節 逆轉錄聚合酶鏈鎖反應---------------------------------------10 第八節 Digoxigenin(DIG)標定核酸探針製作-----------------------10 第九節 胚胎原位雜交---------------------------------------------------11 第十節 免疫螢光染色---------------------------------------------------12 第十一節 α-bungarotoxin (α-BTX)及Znp-1雙染色----------------12 第十二節 冷凍切片------------------------------------------------------13 第十三節 顯微照相系統------------------------------------------------13 第三章 結果---------------------------------------------------------------------14 第一節 斑馬魚與其他脊椎動物MRF4ㄧ級結構分析及親緣關係 --------------------------------------------------------------------------------15 第二節 以胚胎原位雜交(whole-mount in situ hybridization )偵測mrf4在斑馬魚體內生性表現時空分佈---------------------15 第三節 Mrf4 morpholino設計並以RT-PCR (reverse transcription polymerase chain reaction) 確定mrf4 morpholino功能---------------------------------------------------------------------16 第四節 各種Mrf4 morphant 於一般光源下生長型態-------------17 第五節 不同濃度下各種mrf4 morpholino注射後對斑馬魚存活 及畸形比例影響------------------------------------------------18 第六節 mrf4表現下降對斑馬魚骨骼肌α-actin表現造成影響---19 第七節 mrf4 morphant的tnnt 1表現情形----------------------------20 第八節 mrf4 morphant的tnnt 3b表現情形---------------------------20 第九節 mrf4 knockdown對慢肌纖維排列造成影響---------------22 第十節 mrf4 morphant對RB(Rohon-Beard)神經元細胞樹突投射 (RB neuron peripheral process)造成影響-------------------22 第十一節 mrf4 morphant一級運動神經與肌肉接點染色---------24 第十二節 mrf4 morphant之二級運動神經染色---------------------26 第四章 討論---------------------------------------------------------------------27 第一節 斑馬魚mrf4 alternative splicing假說------------------------28 第二節 斑馬魚兩型mrf4時空分佈表現的不同---------------------28 第三節 斑馬魚兩型mrf4表現與慢肌纖維生長發育的關係------29 第四節 斑馬魚兩型mrf4在神經生長發育上造成不同影響------29 參考文獻--------------------------------------------------------------------------31 圖表--------------------------------------------------------------------------------37 附錄--------------------------------------------------------------------------------56 圖表目錄 Fig 1. 與其他脊椎動物MRF4胺基酸序列比對結果--------------------38 Fig 2. 斑馬魚與其他脊椎動物MRF4胺基酸序列演化樹--------------39 Fig 3. 斑馬魚mrf4表現時空上的分佈--------------------------------------40 Fig 4. 藉由反轉錄聚合酵素反應偵測斑馬魚mrf4剪接改變-----------43 Fig 5. 野生種與各種不同mrf4 morphant在可見光下觀察受精後36小時的胚胎型態-----------------------------------------------------------44 Fig 6. 野生種及各種mrf4 knockdown斑馬魚胚胎α-actin原位雜交染色--------------------------------------------------------------------------45 Fig 7. 野生種及各種mrf4 knockdown斑馬魚胚胎Tnnt 1原位雜交染色--------------------------------------------------------------------------46 Fig 8. 野生種及各種mrf4 knockdown斑馬魚胚胎Tnnt 3b原位雜交染色--------------------------------------------------------------------------47 Fig 9. 野生種及各種mrf4 knockdown胚胎F59免疫螢光染色,於斑馬魚胚胎受精後36小時慢肌纖維缺陷----------------------------48 Fig10. 各種mrf4 morphant aat成熟神經染色-----------------------------49 Fig 11. 各種mrf4 morphant Zn12 RB神經元染色------------------------ 51 Fig 12. 各種mrf4 morphant Znp 1及α-bungarotoxin雙染色,運動神經及運動神經肌肉接點分布情形------------------------------------52 Fig 13. 各種mrf4 morphant Zn 5 二級運動神經染色-------------------53 Table1. 各物種MRF4胺基酸序列相似度比較表-------------------------54 Table2. 注射不同濃度各種mrf4 morpholino後24hpf及36hpf斑馬魚存活率及畸形率統計 -----------------------------------------------55 |
參考文獻 |
1. Couly, G.F., P.M. Coltey, and N.M. Le Douarin, The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development, 1992. 114(1): p. 1-15. 2. Hacker, A. and S. Guthrie, A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development, 1998. 125(17): p. 3461-72. 3. Hatta, K., et al., Specification of jaw muscle identity in zebrafish: correlation with engrailed-homeoprotein expression. Science, 1990. 250(4982): p. 802-5. 4. Noden, D.M., The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat, 1983. 168(3): p. 257-76. 5. Noden, D.M., et al., Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev Dyn, 1999. 216(2): p. 96-112. 6. Schilling, T.F. and C.B. Kimmel, Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development, 1994. 120(3): p. 483-94. 7. Tajbakhsh, S. and M. Buckingham, The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol, 2000. 48: p. 225-68. 8. Rhodes, S.J. and S.F. Konieczny, Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev, 1989. 3(12B): p. 2050-61. 9. Braun, T., et al., Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. Embo J, 1990. 9(3): p. 821-31. 10. Miner, J.H. and B. Wold, Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A, 1990. 87(3): p. 1089-93. 11. Davis, R.L., H. Weintraub, and A.B. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 1987. 51(6): p. 987-1000. 12. Wright, W.E., D.A. Sassoon, and V.K. Lin, Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989. 56(4): p. 607-17. 13. Edmondson, D.G. and E.N. Olson, A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev, 1989. 3(5): p. 628-40. 14. Braun, T., et al., A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. Embo J, 1989. 8(3): p. 701-9. 15. Lu, J., et al., MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD. Proc Natl Acad Sci U S A, 1999. 96(2): p. 552-7. 16. Murre, C., P.S. McCaw, and D. Baltimore, A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989. 56(5): p. 777-83. 17. Blackwell, T.K. and H. Weintraub, Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science, 1990. 250(4984): p. 1104-10. 18. Rudnicki, M.A., et al., Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell, 1992. 71(3): p. 383-90. 19. Braun, T., et al., Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell, 1992. 71(3): p. 369-82. 20. Rudnicki M, et al., MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 1993. 75: p. 1351-1359. 21. Hasty, P., et al., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993. 364(6437): p. 501-6. 22. Nabeshima Y, et al., Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 1993. 364: p. 532-535. 23. Braun, T. and H.H. Arnold, Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. Embo J, 1995. 14(6): p. 1176-86. 24. Patapoutian, A., et al., Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development, 1995. 121(10): p. 3347-58. 25. Zhang, W., R.R. Behringer, and E.N. Olson, Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev, 1995. 9(11): p. 1388-99. 26. Patapoutian, A., et al., Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice. Development, 1993. 118(1): p. 61-9. 27. Saitoh, O., et al., Expression of myogenic factors in denervated chicken breast muscle: isolation of the chicken Myf5 gene. Nucleic Acids Res, 1993. 21(10): p. 2503-9. 28. Olson, E.N., et al., Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell, 1996. 85(1): p. 1-4. 29. Yoon, J.K., et al., Different MRF4 knockout alleles differentially disrupt Myf-5 expression: cis-regulatory interactions at the MRF4/Myf-5 locus. Dev Biol, 1997. 188(2): p. 349-62. 30. Nasevicius, A. and S.C. Ekker, Effective targeted gene 'knockdown' in zebrafish. Nat Genet, 2000. 26(2): p. 216-20. 31. Bober, E., et al., The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol, 1991. 113(6): p. 1255-65. 32. Sassoon, D., et al., Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature, 1989. 341(6240): p. 303-7. 33. Hinterberger, T.J., et al., Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol, 1991. 147(1): p. 144-56. 34. Summerbell, D., C. Halai, and P.W. Rigby, Expression of the myogenic regulatory factor Mrf4 precedes or is contemporaneous with that of Myf5 in the somitic bud. Mech Dev, 2002. 117(1-2): p. 331-5. 35. Ott, M.O., et al., Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development, 1991. 111(4): p. 1097-107. 36. Kassar-Duchossoy, L., et al., Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature, 2004. 431(7007): p. 466-71. 37. Della Gaspera, B., et al., Spatio-temporal expression of MRF4 transcripts and protein during Xenopus laevis embryogenesis. Dev Dyn, 2006. 235(2): p. 524-9. 38. Gundersen, K., Determination of muscle contractile properties: the importance of the nerve. Acta Physiol Scand, 1998. 162(3): p. 333-41. 39. DiMario, J.X. and F.E. Stockdale, Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev Biol, 1997. 188(1): p. 167-80. 40. Washabaugh, C.H., et al., Role of the nerve in determining fetal skeletal muscle phenotype. Dev Dyn, 1998. 211(2): p. 177-90. 41. Leberer, E., U. Seedorf, and D. Pette, Neural control of gene expression in skeletal muscle. Calcium-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles. Biochem J, 1986. 239(2): p. 295-300. 42. Misgeld, T., et al., Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron, 2002. 36(4): p. 635-48. 43. Yang, X., et al., Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron, 2001. 30(2): p. 399-410. 44. Lin, W., et al., Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature, 2001. 410(6832): p. 1057-64. 45. Catterall, W.A., From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 2000. 26(1): p. 13-25. 46. Kallen, R.G., S.A. Cohen, and R.L. Barchi, Structure, function and expression of voltage-dependent sodium channels. Mol Neurobiol, 1993. 7(3-4): p. 383-428. 47. Caldwell, J.H., Clustering of sodium channels at the neuromuscular junction. Microsc Res Tech, 2000. 49(1): p. 84-9. 48. Awad, S.S., et al., Sodium channel mRNAs at the neuromuscular junction: distinct patterns of accumulation and effects of muscle activity. J Neurosci, 2001. 21(21): p. 8456-63. 49. Thompson, A.L., et al., A selective role for MRF4 in innervated adult skeletal muscle: Na(V) 1.4 Na+ channel expression is reduced in MRF4-null mice. Gene Expr, 2005. 12(4-6): p. 289-303. 50. Weis, J., et al., Denervation induces a rapid nuclear accumulation of MRF4 in mature myofibers. Dev Dyn, 2000. 218(3): p. 438-51. 51. Zhou, Z. and A. Bornemann, MRF4 protein expression in regenerating rat muscle. J Muscle Res Cell Motil, 2001. 22(4): p. 311-6. 52. Plaghki, L., Regeneration and myogenesis of striated muscle. J Physiol (Paris), 1985. 80(2): p. 51-110. 53. Fuchtbauer, E.M. and H. Westphal, MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn, 1992. 193(1): p. 34-9. 54. Grounds, M.D., et al., Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res, 1992. 267(1): p. 99-104. 55. Kami, K., K. Noguchi, and E. Senba, Localization of myogenin, c-fos, c-jun, and muscle-specific gene mRNAs in regenerating rat skeletal muscle. Cell Tissue Res, 1995. 280(1): p. 11-9. 56. Marsh, D.R., et al., Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats. J Appl Physiol, 1997. 83(4): p. 1270-5. 57. Mendler, L., et al., mRNA levels of myogenic regulatory factors in rat slow and fast muscles regenerating from notexin-induced necrosis. Neuromuscul Disord, 1998. 8(8): p. 533-41. 58. Rantanen, J., et al., Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest, 1995. 72(3): p. 341-7. 59. Sakuma, K., et al., The adaptive response of MyoD family proteins in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta, 1999. 1428(2-3): p. 284-92. 60. Launay, T., et al., Expression and neural control of myogenic regulatory factor genes during regeneration of mouse soleus. J Histochem Cytochem, 2001. 49(7): p. 887-99. 61. Nicolas, N., et al., Localization of Myf-5, MRF4 and alpha cardiac actin mRNAs in regenerating Xenopus skeletal muscle. C R Acad Sci III, 1998. 321(5): p. 355-64. 62. Christel, B., et al., Expression of MRF4 protein in adult and in regenerating muscle in xenopus. Dev Dyn, 2003(227): p. 445-449. 63. Sunyer, T. and J.P. Merlie, Cell type- and differentiation-dependent expression from the mouse acetylcholine receptor epsilon-subunit promoter. J Neurosci Res, 1993. 36(2): p. 224-34. 64. Jennings, C.G., Expression of the myogenic gene MRF4 during Xenopus development. Dev Biol, 1992. 151(1): p. 319-32. 65. Nicolas, N., et al., Long-term denervation modulates differentially the accumulation of myogenin and MRF4 mRNA in adult Xenopus muscle. Neurosci Lett, 1999. 277(2): p. 107-10. 66. Nicolas, N., et al., Neural and hormonal control of expression of myogenic regulatory factor genes during regeneration of Xenopus fast muscles: myogenin and MRF4 mRNA accumulation are neurally regulated oppositely. Dev Dyn, 2000. 218(1): p. 112-22. 67. Devoto, S.H., et al., Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development, 1996. 122(11): p. 3371-80. 68. Downes, G.B. and M. Granato, Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev Biol, 2004. 270(1): p. 232-45. 69. Svoboda, K.R., A.E. Linares, and A.B. Ribera, Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development, 2001. 128(18): p. 3511-20. 70. Williams, J.A., et al., Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling. Dev Biol, 2000. 226(2): p. 220-30. 71. Delalande, J.M. and P.Y. Rescan, Differential expression of two nonallelic MyoD genes in developing and adult myotomal musculature of the trout (Oncorhynchus mykiss). Dev Genes Evol, 1999. 209(7): p. 432-7. 72. Tajbakhsh, S., D. Rocancourt, and M. Buckingham, Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature, 1996. 384(6606): p. 266-70. 73. Venuti, J.M., et al., Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol, 1995. 128(4): p. 563-76. 74. Voytik, S.L., et al., Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn, 1993. 198(3): p. 214-24. 75. Adams, L., et al., Adaptation of nicotinic acetylcholine receptor, myogenin, and MRF4 gene expression to long-term muscle denervation. J Cell Biol, 1995. 131(5): p. 1341-9. 76. Beattie, C.E., Control of motor axon guidance in the zebrafish embryo. Brain Res Bull, 2000. 53(5): p. 489-500. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信