| 系統識別號 | U0002-0607202521311100 |
|---|---|
| DOI | 10.6846/tku202500519 |
| 論文名稱(中文) | 沉浸式虛擬實境自學教材設計指引之發展 |
| 論文名稱(英文) | Development of Guidelines for Designing Immersive Virtual Reality Self-Directed Learning Materials |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 教育科技學系碩士班 |
| 系所名稱(英文) | Department of Educational Technology |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 何裕家 |
| 研究生(英文) | Ho-Yu Ka |
| 學號 | 611736025 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-06-18 |
| 論文頁數 | 151頁 |
| 口試委員 |
指導教授
-
徐新逸(hyshyu@mail.tku.edu.tw)
口試委員 - 張瓊穗(cschang@mail.tku.edu.tw) 口試委員 - 郭盈芝(096078@mail.hwu.edu.tw) |
| 關鍵字(中) |
沉浸式虛擬實境 教學設計 介面設計 自學教材 設計本位研究法 |
| 關鍵字(英) |
Immersive Virtual Reality Instructional Design Interaction Design Self-Directed Learning Materials Design-based Research |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
隨著沉浸式虛擬實境(IVR)技術在教學上廣泛應用,國內於2018年起積極推動IVR融入中小學教學現場,同時亦遭遇各種困難。IVR的多感觀刺激特性會增加學習者的認知負荷,而自學教材則需要學習者獨自於系統中進行學習。因此,提供清晰的設計指引,以協助設計者發展具有效教學設計與介面設計的教材,顯得尤為重要。在當前多數VR應用設計研究仍偏重於娛樂、遊戲或技術導向,且缺乏IVR自學教材相關指引的背景下,為彌補研究空白,本研究旨在針對模擬式IVR自學教材,以設計本位研究法用以最終彙整並建構設計指引。 首先,本研究藉由分析2020年至2024年間與IVR教材設計相關文獻發展趨勢,訂立研究範圍,其後根據Makransky 與 Petersen(2021)提出的沉浸式學習的認知情感模型(CAMIL),篩選文獻並提出的設計要項,歸納為「教學設計」與「介面設計」兩大面向,製作成指引初稿。之後,邀請4位具教學設計或介面設計專長,與具備IVR教材建置相關經驗的專家,協助檢視各設計要項的適用性。專家就個人對各項目的適用性勾選「適用」、「修正後適用」與「不適用」三個選項,研究者據此進行指引項目的修正,並分析質性意見,最終發展出「IVR自學教材設計指引」。 指引中,教學設計面向涉及學習需求、媒體特點、教材內容與呈現、學習歷程分析、個別化設計與倫理考量6大類別,共計38個要項;而介面設計面向則涵蓋一般互動、認知、移動方法、導航、物件選擇與控制及2D選單共6大類別,共計57個要項。 本指引建立系統化的設計基礎供IVR教材開發者參考,以協助降低IVR自學教材的製作門檻,有助提升IVR自學教材之質量。同時,本研究根據自學教材的特性提出具針對性的建議,並加入倫理考量的相關要項,此指引具備創新性,因為其亦同時探討了多媒體學習認知理論如何轉化並實際應用於IVR教材中。 |
| 英文摘要 |
Given the widespread application of immersive virtual reality (IVR) technology in education, Taiwan has been actively promoting the integration of IVR technology into K-12 classrooms. However, various challenges have arisen in this process. In particular, the multimedia nature of IVR self-directed learning materials may increase cognitive load and create a sense of isolation of learners, which may negatively affecting learning outcomes. Hence, providing clear guidelines for designers to develop learning materials with effective instructional and interface design becomes critical. Given that most current research guidelines emphasize entertainment, gaming, and technical perspectives, with limited focus on instructional design for developing learning materials. This study aimed to construct design guidelines specifically for simulation-based IVR self-learning materials through a design-based research approach, which included four main stages, namely, identifying practical problems, applying theory to develop solutions, iterative testing and revision, and synthesizing findings into a final set of key items. This study first analyzed literature trends from 2020 to 2024 to determine the research scope. After that, based on the Cognitive Affective Model of Immersive Learning (CAMIL) proposed by Makransky and Petersen (2021), this study categorizes existing design key items and related recommendations found in the literature into two main domains: "Instructional design" and "Interface design." These key items were synthesized into a draft set of guidelines tailored for IVR self-directed learning materials. Four experts with backgrounds in instructional design, user interface design, and experience in developing IVR learning materials were invited to participate in the study. The experts evaluated each guideline item by selecting one of the following options: "applicable", "applicable after revision", or "Not applicable". Items were then revised or removed based on the experts' opinions. The finalized "Design Guidelines for IVR Self-Directed Learning Materials" were developed for designers of learning materials. The instructional design domain includes six categories: Learning needs, Media characteristics, Content and presentation, Learning process analysis, Personalized design, and Ethical considerations—with a total of 38 key items. The interface design domain includes six categories as well, including: General interaction, Perception, Travel, Wayfinding, Object selection and manipulation, and 2D menu—totaling 57 key items. The proposed guidelines provided a systematic design framework for developers. It helps to lower the production threshold and improve the overall quality of IVR self-directed learning materials. In addition, this study offered specific recommendations addressing specific characteristics of self-directed learning, and introduced ethical considerations especially for elementary and secondary school students. Furthermore, this study explored and validated how design principles from the Cognitive Theory of Multimedia Learning (CTML) could be applied to the context of IVR, contributing an innovative perspective to the field. |
| 第三語言摘要 | |
| 論文目次 |
第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 5 第三節 研究範圍與限制 6 第四節 名詞解釋 9 第二章 文獻回顧 11 第一節 虛擬實境 11 第二節 自學教材 21 第三節 沉浸式虛擬實境教材相關理論 31 第四節 沉浸式虛擬實境教材設計要項 39 第三章 研究方法 53 第一節 研究架構與設計 53 第二節 研究流程 55 第三節 研究對象 58 第四節 研究工具 59 第五節 資料收集與分析 60 第四章 研究結果 61 第一節 文獻篩選結果 61 第二節「沉浸式虛擬實境自學教材設計指引」原型 68 第三節 專家適用性問卷結果 76 第四節 綜合分析與討論 85 第五章 結論與建議 89 第一節 研究結論 89 第二節 未來研究建議 90 參考文獻 92 中文文獻 92 英文文獻 93 附錄一 專家邀約函 105 附錄二「沉浸式虛擬實境自學教材設計指引」 適用性調查問卷 107 附錄三「沉浸式虛擬實境自學教材設計指引」最後定稿 134 表次 表1-1 IVR教材設計之文獻整理 7 表2-1 IVR教材設計之文獻整理 17 表2-2 一般教材與自學教材的差異比較 22 表2-3 現有文獻提出之自學教材的設計原則重點 28 表2-4 Mayer提出的十二項多媒體教材設計原則 35 表3-1 文獻篩選之納入條件與排除條件 56 表3-2 定性分析問題 56 表3-3 立意抽樣專家名單 58 表4-1 系統性文獻回顧中被排除的概念與關鍵詞 61 表4-2 篩選文獻總覽 66 表4-3 教學設計面指引原型要項 70 表4-4 介面設計面指引原型要項 73 表4-5 教學設計面向專家同意率 77 表4-6 介面設計面向專家同意率 79 表4-7 專家適用性問卷之質性意見與修正表 81 圖次 圖1-1 模擬式IVR自學教材設計檢核指引形式與概述 10 圖2-1 虛擬實境(VR)的三大構成元素(3I) 11 圖2-2 市面上的HMD舉隅 12 圖2-3 虛擬世界中的學習安排框架 14 圖2-4 Kolb的體驗式學習四階段 32 圖2-5 CAMIL模型各構面之關係 40 圖2-6 CAMIL模型中各構面和情感與認知因素的相關性 41 圖2-7 CAMIL模型中各構面和互動設計元素之關係 46 圖3-1 研究架構設計與流程總覽 54 圖4-1 文獻篩選流程圖 62 圖4-2 2020至2024年間相關文獻數量變化 63 圖4-3 相關文獻國家分布 64 圖4-4 相關文獻使用對象分布 64 圖4-5 相關文獻使用之研究方法分布 65 圖4-6 相關文獻的應用情境與主題分佈 66 圖4-7 指引原型架構 69 |
| 參考文獻 |
中文文獻 大渕慶史、塚本公秀、安川諒(2021年9月8-10 日)。 VR技術を用いた実習科目教育教材の開発〔研究講演会講演〕。工学教育研究講演会:工学教育研究講演会,長野県,日本。 王金國(2018)。真的「以學生為中心」了嗎?。臺灣教育評論月刊,7(12),117-123。 林益興(2024)。VR在中小學如何運用才會有效教學。取自:https://market.cl oud.edu.tw/exhibit2/2d0c8af807ef45ac17cafb2973d866ba8f38caa9 翁穎哲、譚克平(2008)。設計研究法簡介及其在教育研究的應用範例。科學教育月刊,307,15-30。 徐新逸(2024)。數位教學設計攻略。新北市:淡江大學出版中心。 教育部(2024)。VR/AR教學應用教材。取自:https://market.cloud.edu.tw/list/arvr.jsp 張鈺佳(2018)。 虛擬實境介面設計之研究〔未出版之碩士論文〕。國立政治大學數位內容研究所。 許書務、許嘉強、陳福村(2009)。基於自學式教學策略設計數位邏輯數位教材之初探。亞東學報,29,51-62。 黃政傑(1990)。自學式教材設計之原理與方法。隔空教育論叢,3,223-232。 楊家興(2000)。自學式教材設計手冊。台北市:心理出版社。 廖遠光(2023)。虛擬實境應用於教學對臺灣學生情意及技能成效影響之後設分析。教育傳播與科技研究,131,33-62。 羅于尊(2018)。 虛擬物理實驗室自學教材對高中體育班學生學習動機之影響〔未未出版之碩士論文〕。淡江大學教育與科技研究所。 英文文獻 Abeele, V. V., Schraepen, B., Huygelier, H., Gillebert, C., Gerling, K., & Van Ee, R. (2021). Immersive Virtual Reality for Older Adults. ACM Transactions on Accessible Computing, 14(3). https://doi.org/10.1145/3470743 Acevedo, P., Magana, A. J., Benes, B., & Mousas, C. (2024). A Systematic Review of Immersive Virtual Reality in STEM Education: Advantages and Disadvantages on Learning and User Experience. IEEE Access, 12, 189359–189386. https://doi.org/10.1109/ACCESS.2024.3489233 Ahmad Faudzi, M., Che Cob, Z., Omar, R., Sharudin, S. A., & Ghazali, M. (2023). Investigating the User Interface Design Frameworks of Current Mobile Learning Applications: A Systematic Review. Education Sciences, 13(1), 1-25. https://doi.org/10.3390/educsci13010094 Al-Amri, A. Y., Osman, M. E., & Musawi, A. (2021). The Design Principles of 3D-Virtual Reality Learning Environment (3D-VRLE) in Science Education. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 12(4), 238–249. https://doi.org/10.30476/IJVLMS.2021.91812.1106 Alqahtani, A. S., Daghestani, L. F., & Ibrahim, L. F. (2017). Environments and System Types of Virtual Reality Technology in STEM: A Survey. International Journal of Advanced Computer Science and Applications (IJACSA), 8(6), 77-89. Ashtari, N., Bunt, A., McGrenere, J., Nebeling, M., & Chilana, P. K. (2020, April 21). Creating Augmented and Virtual Reality Applications: Current Practices, Challenges, and Opportunities. Conference on Human Factors in Computing Systems – Proceedings. Honolulu, HI, USA. https://doi.org/10.1145/3313831.3376722 Asoodar, M., Janesarvatan, F., Yu, H., & de Jong, N. (2024). Theoretical foundations and implications of augmented reality, virtual reality, and mixed reality for immersive learning in health professions education. Advances in Simulation, 9(1). https://doi.org/10.1186/s41077-024-00311-5 Baddeley, A., Eysenck, M. W., & Anderson, M. C. (2015). Memory (2nd ed.). New York: Psychology Press. Balu, S. A. (1978). Modular Course for In-service Training of Technician Teacher. Singapore: Colombo Plan Staff College for Technicians. Boyd, J., Barnett, S. W., Bodrova, E., Leong, D. J., & Gomby, D. (2005, March 1). Promoting children’s social and emotional development through preschool education. National Institute for Early Education Research Preschool Policy Brief. New Brunswick, NJ: Rutgers. Burdea, G., & Coiffet, P. (1994) Virtual Reality Technology. New York: John Wiley & Sons, Inc. Catak, G., Zafer Masalci, S., & Senyer, S. (2020). A Guideline Study For Designing Virtual Reality Games. AJIT-e: Online Academic Journal of Information Technology, 11(43), 12–36. https://doi.org/10.5824/ajite.2020.04.001.x Chaurasia, P. (2021). Self-learning: a constructivist approach to enhance teaching-learning of mathematics. International Journal of Indian Psychology, 8(4), 383-392. https://doi.org/10.25215/0804.047 Chatain, J., Kapur, M., & Sumner, R. W. (2023, April 23-28). Three Perspectives on Embodied Learning in Virtual Reality: Opportunities for Interaction Design. Conference on Human Factors in Computing Systems – Proceedings, Hamburg, Germany. https://doi.org/10.1145/3544549.3585805 Chauvergne, E., Hachet, M., & Prouzeau, A. (2023, April 23-28). User Onboarding in Virtual Reality: An Investigation of Current Practices. Conference on Human Factors in Computing Systems – Proceedings, Hamburg, Germany. https://doi.org/10.1145/3544548.3581211 Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149-210. Cuenca, A., Camiña, C., Salt, J., & Ballester, E. (2003, July 21-25). Multimedia Design of Self-Learning Material for a Control Subject (Issue 1). International Conference on Engineering Education. Valencia, Spain. Cummings, J. J., & Bailenson, J. N. (2016). How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychology, 19(2), 272–309. https://doi.org/10.1080/15213269.2015.1015740. Deng, Y., & Wang, Z. (2023). Research on Virtual Reality Experience and User Behavior from the Perspective of Psychology. International Journal for Multidisciplinary Research, 5(6), 1-11. https://doi.org/gs84cg Desurvire, H., & Kreminski, M. (2018, July 15-20). Are game design and user research guidelines specific to virtual reality effective in creating a more optimal player experience? Yes, VR PLAY. 7th International Conference, DUXU 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA. https://doi.org/10.1007/978-3-319-91797-9_4 Dickinson, L. (1987). Self-instruction in language learning. New York: Cambridge University Press. Fröjdman, S. (2016). User experience guidelines for design of virtual reality graphical user interfaces controlled by head orientation input [Unpublished Master's thesis]. University of Skövde. Fu, Y., & Li, Q. (2020). Spatial reference frame based user interface design in the virtual reality game design. DMSVIVA 2020 - Proceedings of the 26th International DMS Conference on Visualization and Visual Languages, 34–36. https://doi.org/10.18293/DMSVIVA20-020 Fuchs, P., Moreau, G., & Guitton, P. (2011). Virtual reality: Concepts and technologies. CRC Press. Garcia Fracaro, S., Chan, P., Gallagher, T., Tehreem, Y., Toyoda, R., Bernaerts, K., Glassey, J., Pfeiffer, T., Slof, B., Wachsmuth, S., Wachsmuth, S., & Wilk, M. (2021). Towards design guidelines for virtual reality training for the chemical industry. Education for Chemical Engineers, 36, 12–23. https://doi.org/10.1016/j.ece.2021.01.014 Gkoumas, C., & Lzzouzi, L. (2023). Is Immersive Virtual Reality in K-12 Education Ready for Primetime? Challenges, Possibilities, and Considerations. Proceedings - 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2023, 541–544. https://doi.org/10.1109/VRW58643.2023.00119 Global Information, Inc. (2024). Virtual Reality (VR) in Education - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2024 - 2029). Mordor Intelligence. https://www.giiresearch.com/report/moi1440106-virtual-reality-vr-education-market-share-analysis.html Gómez-Cambronero, Á., Miralles, I., Tonda, A., & Remolar, I. (2023). Immersive Virtual-Reality System for Aircraft Maintenance Education: A Case Study. Applied Sciences (Switzerland), 13, 5043. https://doi.org/10.3390/app13085043 Greenwald, W. (2024, September 27). The Best VR Headsets for 2024. https://www.pcmag.com/picks/the-best-vr-headsets Haminuddin, N., Saad, M., & Sahrir, M. S. (2024). Digital Transformation in Occupational Safety Education: Formulating Components of Virtual Reality in Tvet Hospitality Programs by Using Tpack Theory. Planning Malaysia, 22(6), 183–195. https://doi.org/10.21837/pm.v22i34.1622 Han, D. I. D., Melissen, F., & Haggis-Burridge, M. (2024). Immersive experience framework: a Delphi approach. Behaviour and Information Technology, 43(4), 623–639. https://doi.org/10.1080/0144929X.2023.2183054 Heilemann, F., Zimmermann, G., & Münster, P. (2021). Accessibility Guidelines for VR Games - A Comparison and Synthesis of a Comprehensive Set. Frontiers in Virtual Reality, 2, 697504. https://doi.org/10.3389/frvir.2021.697504 Howard, M. C., Gutworth, M. B., & Jacobs, R. R. (2021). A meta-analysis of virtual reality training programs. Computers in Human Behavior, 121. https://doi.org/10.1016/j.chb.2021.106808 Ijsselsteijn, W., & Riva, G. (2003). Being there: The experience of presence in mediated environments. In G. Riva, F. Davide, & W. Ijsselsteijn (Eds.), Being There: Concepts, effects and measurement of user presence in synthetic environments (pp. 1-14). Ios Press. Ito, Y., Takeuchi, M., Mikami, S., & Kawamura, Y. (2020). Development and Validation of Virtual Reality Application in Mining Education資源開発教育用VR 教材の開発およびVR教材を利用した授業の定量評価. Journal of MMIJ, 136, 33-39. Jerald, J. (2016). The VR Book: Human-centered design for virtual reality. Morgan & Claypool Publishers. Jiang, J., Zhi, L., & Xiong, Z. (2018, December 12-14). Application of Virtual Reality Technology in Education and Teaching. International Joint Conference on Information, Media and Engineering (ICIME) 2018, Osaka, Japan. https://doi.org/10.1109/ICIME.2018.00070 Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really need?. Educational Psychology Review, 23(1), 1–19. Kavanagh, S., Luxton-Reilly, A., Wuensche, B., & Plimmer, B. (2017). A systematic review of virtual reality in education. Themes in Science and Technology Education, 10(2), 85–119. Khorasani, S., Victor Syiem, B., Nawaz, S., Knibbe, J., & Velloso, E. (2023). Hands-on or hands-off: Deciphering the impact of interactivity on embodied learning in VR. Computers and Education: X Reality, 3, 100037. https://doi.org/10.1016/j.cexr.2023.100037 Kilteni, K., Groten, R., & Slater, M. (2012). The sense of embodiment in virtual reality. Presence: Teleoperators and Virtual Environments, 21(4), 373–387. https://doi.org/10.1162/PRES_a_00124. Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice-Hall. Lee, K. M. (2004). Presence, explicated. Communication Theory, 14(1), 27-50. Lege, R., & Bonner, E. (2020). Virtual reality in education: The promise, progress, and challenge. JALT CALL Journal, 16, 167-180. https://doi.org/10.29140/jaltcall.v16n3.388 Liu, D., Bhagat, K. K., Gao, Y., Chang, T.-W., & Huang, R. (2017). The potentials and trends of virtual reality in education. In D. Liu, C. Dede, R. Huang, & J. Richards. (Eds.), Virtual, augmented, and mixed realities in education (pp. 105–130). Singapore: Springer. https://doi.org/10.1007/978-981-10-5490-7_7 Liu, F. J., & Yeh, C. C. (2022). The Influence of Competency-Based VR Learning Materials on Students’ Problem-Solving Behavioral Intentions—Taking Environmental Issues in Junior High Schools as an Example. Sustainability, 14(23), 16036. Liu, J., Parekh, H., Al-Zayer, M., & Folmer, E. (2018). Increasing walking in VR using redirected teleportation. Proceedings of the 31st annual ACM symposium on user interface software and technology, 521-529. https://doi.org/10.1145/3242587.324260 Lui, A. L. C., Not, C., & Wong, G. K. W. (2023). Theory-Based Learning Design with Immersive Virtual Reality in Science Education: a Systematic Review. Journal of Science Education and Technology, 32(3), 390–432. https://doi.org/10.1007/s10956-023-10035-2 Ma, M., & Zheng, H. (2011). Virtual reality and serious games in healthcare. In S. Brahnam, & L. C. Jain (Eds.), Advanced Computational Intelligence Paradigms in healthcare 6. Virtual reality in Psychotherapy, Rehabilitation, and assessment (pp. 169–192). Springer. 10.1007/978-3-642-17824-5_1 Maathuis, C. (2024). Design Framework for VR Games in the Police Domain. Proceedings of the European Conference on Games-Based Learning, 18(1), 571–579. https://doi.org/10.34190/ecgbl.18.1.2643 Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719–735. https://doi.org/10.1037/edu0000473 Makransky, G., & Petersen, G. B. (2021). The Cognitive Affective Model of Immersive Learning (CAMIL): a Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educational Psychology Review 33(3), 937–958. https://doi.org/10.1007/s10648-020-09586-2 Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007 Mallek, F., Mazhar, T., Shah, S. F. A., Ghadi, Y. Y., & Hamam, H. (2024). A review on cultivating effective learning: synthesizing educational theories and virtual reality for enhanced educational experiences. PeerJ Computer Science, 10(e2000), 1-41. https://doi.org/10.7717/PEERJ-CS.2000 Marougkas, A., Troussas, C., Krouska, A., & Sgouropoulou, C. (2023). Virtual Reality in Education: A Review of Learning Theories, Approaches and Methodologies for the Last Decade. Electronics, 12(13). https://doi.org/10.3390/electronics12132832 Matovu, H., Ungu, D. A. K., Won, M., Tsai, C.-C., Treagust, D. F., Mocerino, M., & Tasker, R. (2023). Immersive virtual reality for science learning: Design, implementation, and evaluation. Studies in Science Education, 59(2), 205–244. https://doi.org/10.1080/03057267.2022.2082680 Mayer, R. (2021). Multimedia Learning (3rd ed.). Cambridge: Cambridge University Press. McGowin, G., Fiore, S. M., & Oden, K. (2021). Learning Affordances: Theoretical Considerations for Design of Immersive Virtual Reality in Training and Education. Proceedings of the Human Factors and Ergonomics Society, 65(1), 883–887. https://doi.org/10.1177/1071181321651293 Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis. Computers and Education, 70, 29–40. https://doi.org/10.1016/j.compedu.2013.07.033 Moore, J. W., & Fletcher, P. C. (2012). Sense of agency in health and disease: A review of cue integration approaches. Consciousness and Cognition, 21(1), 59–68. https://doi.org/10.1016/j.concog.2011.08.010. Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19(3), 309-326. Mulders, M., Buchner, J., & Kerres, M. (2020). A Framework for the Use of Immersive Virtual Reality in Learning Environments. International Journal of Emerging Technologies in Learning, 15(24), 208–224. https://doi.org/10.3991/ijet.v15i24.16615 Nysetvold, J. T., & Salmon, J. L. (2021). Evaluation of user preferences for 3d modeling and design reviews in virtual reality. Computer-Aided Design and Applications, 18(5), 1035–1049. https://doi.org/10.14733/cadaps.2021.1035-1049 Oje, A. V., Hunsu, N. J., & May, D. (2023). Virtual reality assisted engineering education: A multimedia learning perspective. Computers and Education: X Reality, 3, 100033. https://doi.org/10.1016/j.cexr.2023.100033 Paivio, A. (2006). Mind and its evolution: A dual-coding approach. Mahwah, NJ: Erlbaum. Pareek, U. (1981). A Handbook for Trainers in Educational Management. Bangkok: UNESCO Regional Office for Education in Asia and the Pacific. Philippe, S., Souchet, A. D., Lameras, P., Petridis, P., Caporal, J., Coldeboeuf, G., & Duzan, H. (2020). Multimodal teaching, learning and training in virtual reality: a review and case study. Virtual Reality and Intelligent Hardware, 2(5), 421-442. https://doi.org/10.1016/j.vrih.2020.07.008 Piaget, J. (1970). Piaget's theory. In Mussen, P. (Ed.), Carmichael's Manual Child Psychology (pp. 61-84). New York: Wiley. Pierce, J. S., & Pausch, R. (2004, March 27-31). Navigation with place representations and visible landmarks. IEEE virtual reality 2004, Chicago, IL, USA. doi: 10.1109/VR.2004.1310071. Porcino, T., Reilly, D., Clua, E., & Trevisan, D. (2022, August 10-12). A guideline proposal for minimizing cybersickness in VR-based serious games and applications. 2022 IEEE 10th International Conference on Serious Games and Applications for Health, Sydney, Australia. https://doi.org/10.1109/SEGAH54908.2022.9978552 Reeves, T. (2000, April, 27). Enhancing the worth of instructional technology research through “design experiments” and other development research strategies. The annual meeting of the American Educational Research Association, New Orleans, LA. Rowntree, D. (1992). Teaching through self instruction: How to develop open learning materials. New York: Kegan Paul. Safikhani, S., Holly, M., & Pirker, J. (2020). Work-in-Progress-Conceptual Framework for User Interface in Virtual Reality. Proceedings of 6th International Conference of the Immersive Learning Research Network, ILRN 2020, 332–335. https://doi.org/10.23919/iLRN47897.2020.9155207 Saykili, A. (2019). Higher Education in The Digital Age: The Impact of Digital Connective Technologies. Journal of Educational Technology and Online Learning, 2(1), 1–15. https://doi.org/10.31681/jetol.516971 Schuelke, S. A., Davis, K., & Barnason, S. (2022). Implementing Immersive Virtual Reality into a Nursing Curriculum. Innovations in Health Sciences Education Journal, 1(1), 1-10. Shahu, A., Kinzer, K., & Michahelles, F. (2023). Enhancing Professional Training with Single-User Virtual Reality: Unveiling Challenges, Opportunities, and Design Guidelines. ACM International Conference Proceeding Series, 238–250. https://doi.org/10.1145/3626705.3627791 Sheridan, T. B. (1992). Musings on Telepresence and virtual presence. Presence: Teleoperators and Virtual Environments, 1(1), 120–126. https://doi.org/10.1162/pres.1992.1.1.120 Sherman, W. R., & Craig, A. B. (2019). Understanding virtual reality: interface, application, and design. Cambridge, MA: Morgan Kaufmann Publishers. Shin, K.-S., Cho, C., Ryu, J. H., & Jo, D. (2023). Exploring the Perception of the Effect of Three-Dimensional Interaction Feedback Types on Immersive Virtual Reality Education. Electronics, 12(21), 1-12. https://doi.org/10.3390/electronics12214414 Skinner, B. F. (1954). The science of learning and the art of teaching. Harvard Educational Review, 24, 86–97. Skulmowski, A. (2023). Ethical issues of educational virtual reality. Computers and Education: X Reality, 2, 1-8. https://doi.org/10.1016/j.cexr.2023.100023 Slater, M. (2017). Implicit learning through embodiment in immersive virtual reality. In Liu et al. (Eds.) Virtual, augmented, and mixed realities in education (pp. 19-33). Springer, Singapore. Song, C., Shin, S.-Y., & Shin, K.-S. (2023). Optimizing Foreign Language Learning in Virtual Reality: A Comprehensive Theoretical Framework Based on Constructivism and Cognitive Load Theory (VR-CCL). Applied Science, 13(23), 1-31. https://doi.org/10.3390/app132312557 Sorensen, S., Ladin, Z., & Kambhamettu, C. (2016, October 18-20). Rapid development of scientific virtual reality applications. 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA. 10.1109/AIPR.2016.8010589. Stieglitz, S., Lattemann, C., Kallischnigg, M. (2010, August 12-15). Experiential Learning in Virtual Worlds—A Case Study for Entrepreneurial Training. 16th Americas Conference on Information Systems, AMCIS 2010. Lima, Peru. Sung, B., Mergelsberg, E., Teah, M., D'Silva, B., & Phau, I. (2021). The effectiveness of a marketing virtual reality learning simulation: A quantitative survey with psychophysiological measures. British Journal of Educational Technology. 52(1). 196-213. https://doi.org/10.1111/bjet.13003 Sweller, J. (1988). Cognitive load during problem solving: Effects on learning, Cognitive Science, 12, 257-285. Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22(2), 123–138. Tarhan, B. (2009). A Proposed Model for The Design of Self-Learning Language Materials. ZKU Journal of Social Sciences, 5(10), 221–233. Van Merriënboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177. https://doi.org/10.1007/s10648-005-3951-0. Vogt, A., Babel, F., Hock, P., Baumann, M., & Seufert, T. (2021). Immersive virtual reality or auditory text first? Effects of adequate sequencing and prompting on learning outcome. British Journal of Educational Technology, 52(5), 2058–2076. https://doi.org/10.1111/bjet.13104 Wang, H., He, M., Zeng, C., Qian, L., Wang, J., & Pan, W. (2023). Analysis of learning behaviour in immersive virtual reality. Journal of Intelligent and Fuzzy Systems, 45(4), 5927–5938. https://doi.org/10.3233/JIFS-231383 Wang, W. S., Lee, H. Y., Lin, C. J., Li, P. H., Huang, Y. M., & Wu, T. T. (2024). Enhancing students’ learning outcomes in self-regulated virtual reality learning environment with learning aid mechanisms. British Journal of Educational Technology, 1-22. https://doi.org/10.1111/bjet.13512 Wehrmann, F., & Zender, R. (2024). Inclusive Virtual Reality Learning: Review and “Best-Fit” Framework for Universal Learning. Electronic Journal of E-Learning, 22(3), 74–89. https://doi.org/10.34190/ejel.21.6.3265 Weise, M., Zender, R., & Lucke, U. (2020). How Can i Grab That? Solving Issues of Interaction in VR by Choosing Suitable Selection and Manipulation Techniques. I-Com, 19(2), 67–85. https://doi.org/10.1515/icom-2020-0011 Wohlgenannt, I., Fromm, J., Stieglitz, S., Radianti, J. & Majchrzak, T. A. (2019). Virtual Reality in Higher Education: Preliminary Results from a Design-Science-Research Project. In A. Siarheyeva, C. Barry, M. Lang, H. Linger, & C. Schneider (Eds.), Information Systems Development: Information Systems Beyond 2020 (ISD2019 Proceedings). Toulon, France: ISEN Yncréa Méditerranée. Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. British Journal of Educational Technology, 51(6), 1991–2005. https://doi.org/10.1111/bjet.13023 Xie, H. (2023). The Applications of Interface Design and User Experience in Virtual Reality. Highlights in Science, Engineering and Technology, 44, 189-198. https://doi.org/10.54097/hset.v44i.7318 Yahaya, N. S., Mutalib, A. A., & Salam, S. N. A. (2022). A Comparative Analysis on Cybersickness Reduction Guidelines in VR and IVR Applications for Children Road Safety Education. International Journal of Interactive Mobile Technologies, 16(5), 33–48. https://doi.org/10.3991/ijim.v16i05.26359 Yamashita, T., Yokoyama, T., & Kawamoto, D. (2022). Example of Introducing VR (Virtual Reality) into Physical Therapist Training Education to Make Education Using Virtual Reality Familiar. Rigakuryoho Kagaku 37(5), 517–521. Yeo, A., Kwok, B. W. J., Joshna, A., Chen, K., & Lee, J. S. A. (2024). Entering the Next Dimension: A Review of 3D User Interfaces for Virtual Reality. Electronics, 13(3), 1-17. https://doi.org/10.3390/electronics13030600 Yu, Z. (2021). A meta-analysis of the effect of virtual reality technology use in education. Interactive Learning Environments, 1-21. https://doi.org/10.1080/10494820.2021.1989466 Zhang, Y., & Song, Y. (2022). The Effects of Sensory Cues on Immersive Experiences for Fostering Technology-Assisted Sustainable Behavior: A Systematic Review. Behavioral Sciences, 12(10). https://doi.org/10.3390/bs12100361 |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信