§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0607202521053700
DOI 10.6846/tku202500518
論文名稱(中文) 探討在操縱性廣告中人工智慧生成內容對消費者購買意圖之影響
論文名稱(英文) Exploring the Impact of AI-Generated Content in Manipulated Advertising on Consumer Purchase Intention
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊管理學系碩士班
系所名稱(英文) Department of Information Management
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 113
學期 2
出版年 114
研究生(中文) 蕭妤恩
研究生(英文) YU-EN HSIAO
學號 612630094
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2025-06-14
論文頁數 64頁
口試委員 指導教授 - 吳雅鈴(joannewu@mail.tku.edu.tw)
口試委員 - 鄭啟斌
口試委員 - 廖耕億
口試委員 - 吳雅鈴
關鍵字(中) 生成式人工智慧
操縱複雜度
購買意圖
腦電圖
關鍵字(英) Generative Artificial Intelligence (GAI)
Manipulation Sophistication
Purchase Intention
Electroencephalogram (EEG)
第三語言關鍵字
學科別分類
中文摘要
隨著生成式人工智慧(Generative AI,GAI)技術的迅速發展,企業廣泛應用此技術於廣告創作中,以提升內容的擬真性與創造力。然而,過度操控的AI廣告是否會影響消費者的心理負擔與購買行為,仍有待深入探討。本研究旨在分析GAI廣告之操縱複雜度對消費者感知擬真性、感知創造力、內隱壓力與購買意圖之影響,並引入視覺風格(虛幻/真實)作為調節變數,探討調節效果。本研究採用實驗室實驗法,透過設計不同操縱複雜度與視覺風格的廣告影片,並結合問卷調查與腦波儀(EEG)測量受測者的心理與生理反應,共回收125份有效樣本。問卷資料以SmartPLS 4.0進行結構方程模型分析,腦波數據則以EMOTIV PRO 3.0進行解讀。研究結果顯示:操縱複雜度顯著正向影響感知擬真性、感知創造力與壓力;感知擬真性與創造力亦正向影響購買意圖;而壓力則出乎意料地對購買意圖具有正向影響,顯示適度的心理壓力可能提高注意力與廣告處理深度。此外,視覺風格在部分路徑中展現調節效果,特別是在操縱複雜度對感知擬真性與壓力的關係上更為顯著。此結果說明GAI廣告的設計應在擬真性與創造力之間取得平衡,並考量視覺風格對消費者心理反應的潛在影響。
英文摘要
With the rapid advancement of Generative Artificial Intelligence (GAI) technologies, businesses have increasingly adopted GAI for advertising creation to enhance content verisimilitude and creativity. However, concerns remain regarding whether excessively manipulated AI-generated advertisements may impose psychological burdens on consumers and influence their purchasing behavior. This study aims to examine the impact of manipulation sophistication in GAI advertisements on consumers’ perceived verisimilitude, perceived creativity, implicit stress, and purchase intention. Visual style (fantasy vs. reality) is introduced as a moderating variable to explore its regulatory role in these relationships. A laboratory experiment was conducted using video advertisements with varying levels of manipulation sophistication and visual styles. Psychological and physiological responses were collected through questionnaires and electroencephalogram (EEG) measurements, yielding 125 valid samples. Questionnaire data were analyzed using SmartPLS 4.0 for structural equation modeling, and EEG data were interpreted via EMOTIV PRO 3.0. The results indicate that manipulation sophistication significantly and positively affects perceived verisimilitude, perceived creativity, and stress. Furthermore, both perceived verisimilitude and perceived creativity positively influence purchase intention. Notably, stress unexpectedly showed a positive effect on purchase intention, suggesting that moderate psychological stress may enhance attention and depth of advertisement processing. Visual style demonstrated moderating effects in several pathways, particularly between manipulation sophistication and both perceived verisimilitude and stress. These findings highlight the importance of balancing verisimilitude and creativity in GAI advertisement design while considering the potential psychological impact of visual style on consumer responses.
第三語言摘要
論文目次
目錄
第一章	緒論	1
1.1	研究背景與動機	1
1.2	研究目的	4
第二章	文獻探討	6
2.1	生成式人工智慧與廣告	6
2.2	生成式人工智慧之操縱複雜度	7
2.3	生成式人工智慧與購買意圖	9
2.4	行為信念的前因(Antecedents of Behavioral Beliefs)	10
2.4.1	行為信念的內隱前因(Implicit Antecedent of Behavioral Beliefs)	11
2.4.1.1	 內隱壓力(Implicit Stress)	11
2.4.2	行為信念的外顯前因(Explicit Antecedents of Behavioral Beliefs)	12
2.4.2.1	 外顯擬真性 (Explicit Verisimilitude)	13
2.4.2.2	 外顯創造力 (Explicit Creativity)	14
第三章	研究方法	15
3.1	研究模型	15
3.2	研究流程	16
3.3	研究假說	17
3.3.1	操縱複雜度	17
3.3.2	視覺風格(Visual Style)	18
3.3.3	外顯擬真性	21
3.3.4	外顯創造力	21
3.3.5	內隱壓力	22
3.4	研究設計	22
3.4.1	生成式AI廣告設計架構	22
3.4.2	實驗流程	24
3.4.3	實驗設計	25
3.4.4	腦波資料蒐集	28
3.4.5	實驗對象	29
3.5	問卷設計	30
3.5.1	問卷題項	30
第四章	資料分析與結果	34
4.1	資料分析方法	34
4.2	樣本描述	34
4.2.1	性別	34
4.2.2	年齡	34
4.2.3	使用生成式AI相關軟體的頻率	35
4.2.4	網購的頻率	35
4.3	測量模型分析	36
4.4	共線性分析	38
4.5	腦波壓力數值轉換	39
4.6	腦波資料	40
4.7	腦顯影圖	41
4.8	結構模型分析	44
4.9	假說結果驗證	46
第五章	結論與建議	47
5.1	研究結果與討論	47
5.1.1	操縱複雜度對於感知擬真性、感知創造力、壓力之關係	47
5.1.2	感知擬真性、感知創造力、壓力對於購買意圖之關係	48
5.1.3	視覺風格在操縱複雜度對於購買意圖的影響有顯著調節效果	49
5.2	理論意涵	51
5.3	實務意涵	51
5.4	研究限制與建議	52
參考文獻	54
附錄 研究問卷之問項	61

圖目錄
圖1研究模型	16
圖2實驗流程	25
圖3 AI生成式室內設計網站之操作流程	27
圖4腦波儀器	28
圖5配戴示意圖	28
圖6腦波資料流程圖	29
圖7觀看虛幻風格(壓力高)廣告之腦波壓力值個案截圖	39
圖8觀看真實風格(壓力低)廣告之腦波壓力值個案截圖	40
圖9觀看虛幻風格廣告之腦波個案截圖	41
圖10觀看真實風格廣告之腦波個案截圖	41
圖11虛幻風格廣告開始時	43
圖12虛幻風格廣告結束時	43
圖13真實風格廣告開始時	44
圖14真實風格廣告結束時	44
圖15結構模型分析	45

表目錄
表1研究流程	16
表2操縱複雜度問項	31
表3感知擬真性問項	31
表4感知創造力問項	32
表5購買意圖問項	33
表6一般性統計資料	35
表7信效度評估:各構面敘述性統計	37
表8驗證性因素和交叉負荷	37
表9區別效度評估: Fornell & Larcker分析	38
表10共線性分析	38
表11假說結果驗證	46

參考文獻
Abdelfattah, F., Al Halbusi, H., & Al-Brwani, R. M. (2022). Influence of self-perceived creativity and social media use in predicting E-entrepreneurial intention. International Journal of Innovation Studies, 6(3), 119-127. 
Aggarwal, R., & Mittal, S. (2022). Impact of social media marketing activities on purchase intentions via customer equity drivers: an empirical case study on smartphone brands. International Journal of Online Marketing (IJOM), 12(1), 1-19. 
Aguirre, E., Mahr, D., Grewal, D., De Ruyter, K., & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of retailing, 91(1), 34-49. 
Ahmed, A. M. A., & Othman, A. K. B. (2024). The Effect of False Advertising on Consumer Online Purchase Behavior with the Mediating Effect of e-WOM: Consumers in Malaysia. Information Management and Business Review, 16(2), 115-128.
Alzougool, B. (2024). Predictors of Digital Entrepreneurial Intention in Kuwait. Informing Science: The International Journal of an Emerging Transdiscipline, 27, 007. 
Anantrasirichai, N., & Bull, D. (2022). Artificial intelligence in the creative industries: a review. Artificial intelligence review, 55(1), 589-656. 
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. 
Ang, S. H., Lee, Y. H., & Leong, S. M. (2007). The ad creativity cube: Conceptualization and initial validation. Journal of the Academy of Marketing Science, 35, 220-232. 
Arango, L., Singaraju, S. P., & Niininen, O. (2023). Consumer responses to AI-generated charitable giving ads. Journal of Advertising, 52(4), 486-503. 
Barki, H., Paré, G., & Sicotte, C. (2008). Linking IT implementation and acceptance via the construct of psychological ownership of information technology. Journal of Information Technology, 23(4), 269-280. 
Becker, M., Wiegand, N., & Reinartz, W. J. (2019). Does it pay to be real? Understanding authenticity in TV advertising. Journal of Marketing, 83(1), 24-50. 
Bogicevic, V., Seo, S., Kandampully, J. A., Liu, S. Q., & Rudd, N. A. (2019). Virtual reality presence as a preamble of tourism experience: The role of mental imagery. Tourism management, 74, 55-64. 
Bolger, N., & Zuckerman, A. (1995). A framework for studying personality in the stress process. Journal of personality and social psychology, 69(5), 890–902. 
Bushara, M. A., Abdou, A. H., Hassan, T. H., Sobaih, A. E. E., Albohnayh, A. S. M., Alshammari, W. G., Aldoreeb, M., Elsaed, A. A., & Elsaied, M. A. (2023). Power of social media marketing: how perceived value mediates the impact on restaurant followers’ purchase intention, willingness to pay a premium price, and e-WoM? Sustainability, 15(6), 1-22. 
Campbell, C., Plangger, K., Sands, S., & Kietzmann, J. (2022). Preparing for an era of deepfakes and AI-generated ads: A framework for understanding responses to manipulated advertising. Journal of Advertising, 51(1), 22-38. 
Campbell, M. C. (1995). When attention-getting advertising tactics elicit consumer inferences of manipulative intent: The importance of balancing benefits and investments. Journal of Consumer Psychology, 4(3), 225-254. 
Chamola, V., Bansal, G., Das, T. K., Hassija, V., Sai, S., Wang, J., Zeadally, S., Hussain, A., Yu, F. R., & Guizani, M. (2024). Beyond reality: The pivotal role of generative ai in the metaverse. IEEE Internet of Things Magazine, 7(4), 126-135. 
Chin, W.W. (1998) Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22, 7-16.
Christou, C. (2010). Virtual reality in education. In Affective, interactive and cognitive methods for e-learning design: creating an optimal education experience (pp. 228-243). IGI Global Scientific Publishing. 
Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587-595. 
Cillo, P., & Rubera, G. (2024). Generative AI in innovation and marketing processes: A roadmap of research opportunities. Journal of the Academy of Marketing Science, 1-18. 
Cornelis, E., & Peter, P. C. (2017). The real campaign: The role of authenticity in the effectiveness of advertising disclaimers in digitally enhanced images. Journal of Business Research, 77, 102-112. 
Cotte, J., Coulter, R. A., & Moore, M. (2005). Enhancing or disrupting guilt: The role of ad credibility and perceived manipulative intent. Journal of Business Research, 58(3), 361-368. 
Darke, P. R., & Ritchie, R. J. (2007). The defensive consumer: Advertising deception, defensive processing, and distrust. Journal of Marketing research, 44(1), 114-127. 
de Guinea, A. O., Titah, R., & Léger, P.-M. (2014). Explicit and implicit antecedents of users' behavioral beliefs in information systems: A neuropsychological investigation. Journal of Management Information Systems, 30(4), 179-210. 
Deng, S., Tan, C.-W., Wang, W., & Pan, Y. (2019). Smart generation system of personalized advertising copy and its application to advertising practice and research. Journal of Advertising, 48(4), 356-365. 
Dessart, L., & Pitardi, V. (2019). How stories generate consumer engagement: An exploratory study. Journal of Business Research, 104, 183-195. 
Dimoka, A., Pavlou, P. A., & Davis, F. D. (2011). Research commentary—NeuroIS: The potential of cognitive neuroscience for information systems research. Information Systems Research, 22(4), 687-702. 
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., & Eirug, A. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International journal of information management, 57, 101994. 
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International journal of information management, 71, 102642. 
Eapen, T., Finkenstadt, D. J., Folk, J., & Venkataswamy, L. (2023). How generative AI can augment human creativity. Harvard Business Review, 101(4), 56-64. 
Escalas, J. E. (2004). Imagine yourself in the product: Mental simulation, narrative transportation, and persuasion. Journal of Advertising, 33(2), 37-48. 
Fine, K. (2021). Verisimilitude and truthmaking. Erkenntnis, 86, 1239-1276. 
Ford, J., Jain, V., Wadhwani, K., & Gupta, D. G. (2023). AI advertising: An overview and guidelines. Journal of Business Research, 166, 114124. 
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing research, 18(1), 39-50. 
Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of information technology case and application research, 25(3), 277-304.
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014) Generative Adversarial Nets. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2, 2672-2680. 
Grewal, D., Roggeveen, A. L., Sisodia, R., & Nordfält, J. (2017). Enhancing customer engagement through consciousness. Journal of retailing, 93(1), 55-64. 
Gu, C., Jia, S., Lai, J., Chen, R., & Chang, X. (2024). Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence. Journal of Theoretical and Applied Electronic Commerce Research, 19(3), 2218-2238. 
Gupta, R., Nair, K., Mishra, M., Ibrahim, B., & Bhardwaj, S. (2024). Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda. International Journal of Information Management Data Insights, 4(1), 100232. 
Hair, J. F. J., W. C. Black, B. J. Babin, and R. E. Anderson, 2010. Multivariate Data Analysis (7th ed.), Upper Saddle River, NJ: Prentice Hall.
Hartmann, P., Apaolaza, V., & Eisend, M. (2016). Nature imagery in non-green advertising: The effects of emotion, autobiographical memory, and consumer's green traits. Journal of Advertising, 45(4), 427-440. 
Herrando, C., & Martín‐De Hoyos, M. J. (2022). Influencer endorsement posts and their effects on advertising attitudes and purchase intentions. International Journal of Consumer Studies, 46(6), 2288-2299. 
Huang, M. H., & Rust, R. T. (2024). The caring machine: Feeling AI for customer care. Journal of Marketing, 88(5), 1-23. 
Huh, J., Nelson, M. R., & Russell, C. A. (2023). ChatGPT, AI advertising, and advertising research and education. Journal of Advertising, 52(4), 477-482.
Im, S., Bhat, S., & Lee, Y. (2015). Consumer perceptions of product creativity, coolness, value and attitude. Journal of Business Research, 68(1), 166-172. 
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. 
Karahanna, E., & Straub, D. W. (1999). The psychological origins of perceived usefulness and ease-of-use. Information & management, 35(4), 237-250. 
Khan, Y., Hameed, I., & Akram, U. (2023). What drives attitude, purchase intention and consumer buying behavior toward organic food? A self-determination theory and theory of planned behavior perspective. British Food Journal, 125(7), 2572-2587. 
Kietzmann, J., Lee, L. W., McCarthy, I. P., & Kietzmann, T. C. (2020). Deepfakes: Trick or treat? Business Horizons, 63(2), 135-146. 
Kietzmann, J., Mills, A. J., & Plangger, K. (2021). Deepfakes: perspectives on the future “reality” of advertising and branding. International Journal of Advertising, 40(3), 473-485. 
Kilby, C. J., Sherman, K. A., & Wuthrich, V. M. (2020). A scoping review of stress beliefs: Literature integration, measurement issues, and theoretical concerns. Annals of Behavioral Medicine, 54(8), 595-610. 
Kim, A. J., & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business Research, 65(10), 1480-1486. 
Kim, M., & Song, D. (2017). When brand-related UGC induces effectiveness on social media: the role of content sponsorship and content type. International Journal of Advertising, 37(1), 105–124. 
Kim, W. B., & Choo, H. J. (2023). How virtual reality shopping experience enhances consumer creativity: The mediating role of perceptual curiosity. Journal of Business Research, 154, 113378. 
Kline, R. B. (1998). Structural equation modeling. New York: Guilford, 33. 
Koslow, S., Sasser, S. L., & Riordan, E. A. (2003). What is creative to whom and why? Perceptions in advertising agencies. Journal of Advertising Research, 43(1), 96-110. 
Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, 102716.
Kumar, A., Lee, H.-J., & Kim, Y.-K. (2009). Indian consumers' purchase intention toward a United States versus local brand. Journal of Business Research, 62(5), 521-527. 
Laros, F. J., & Steenkamp, J.-B. E. (2005). Emotions in consumer behavior: a hierarchical approach. Journal of Business Research, 58(10), 1437-1445. 
Lim, K. H., Sia, C. L., Lee, M. K., & Benbasat, I. (2006). Do I trust you online, and if so, will I buy? An empirical study of two trust-building strategies. Journal of Management Information Systems, 23(2), 233-266. 
Martins, J., Costa, C., Oliveira, T., Gonçalves, R., & Branco, F. (2019). How smartphone advertising influences consumers' purchase intention. Journal of Business Research, 94, 378-387. 
McClelland, D. C. (1989). Motivational factors in health and disease. American Psychologist, 44(4), 675-683. 
Modig, E., & Dahlen, M. (2020). Quantifying the Advertising-Creativity Assessments of Consumers Versus Advertising Professionals: Does It Matter Whom You Ask? Journal of Advertising Research, 60(3), 324-336. 
Nunnally, N. R. (1978). Stream renovation: an alternative to channelization. Environmental Management, 2, 403-411. 
Nuseir, M. T. (2018). Impact of misleading/false advertisement to consumer behaviour. International Journal of Economics and Business Research, 16(4), 453-465. 
Park, D.-H. (2017). Virtuality as a psychological distance: The strategy for advertisement message appeal depending on virtuality. Journal of Information Technology Applications and Management, 24(2), 39-54. 
Parris, D. L., & Guzman, F. (2023). Evolving brand boundaries and expectations: looking back on brand equity, brand loyalty, and brand image research to move forward. Journal of Product & Brand Management, 32(2), 191-234. 
Pawle, J., & Cooper, P. (2006). Measuring emotion—Lovemarks, the future beyond brands. Journal of Advertising Research, 46(1), 38-48. 
Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking through the clutter: Benefits of advertisement originality and familiarity for brand attention and memory. Management science, 48(6), 765-781. 
Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., & Sutskever, I. (2021). Zero-shot text-to-image generation. In International conference on machine learning (pp. 8821-8831). 
Riedl, M.O., & Harrison, B. (2016). Using Stories to Teach Human Values to Artificial Agents. AAAI Workshop: AI, Ethics, and Society. 
Rosengren, S., Eisend, M., Koslow, S., & Dahlen, M. (2020). A meta-analysis of when and how advertising creativity works. Journal of Marketing, 84(6), 39-56. 
Schultheiss, O. C., Wiemers, U. S., & Wolf, O. T. (2014). Implicit need for achievement predicts attenuated cortisol responses to difficult tasks. Journal of Research in Personality, 48, 84-92. 
Sharma, A., Dwivedi, Y. K., Arya, V., & Siddiqui, M. Q. (2021). Does SMS advertising still have relevance to increase consumer purchase intention? A hybrid PLS-SEM-neural network modelling approach. Computers in Human Behavior, 124, 106919. 
Sharma, R., Yetton, P., & Crawford, J. (2009). Estimating the effect of common method variance: the method—method pair technique with an illustration from TAM research. Mis Quarterly, 473-490. 
Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual review of biomedical engineering, 19(1), 221-248. 
Shoenberger, H., Kim, E., & Johnson, E. K. (2020). Role of perceived authenticity of digital enhancement of model advertising images on brand attitudes, social media engagement. Journal of Interactive Advertising, 20(3), 181-195. 
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285. 
Taute, H. A., McQuitty, S., & Sautter, E. P. (2011). Emotional information management and responses to emotional appeals. Journal of Advertising, 40(3), 31-44. 
Teng, C.-I., Huang, T.-L., Huang, G.-L., Wu, C.-N., Cheng, T., & Liao, G.-Y. (2024). Creatability, achievability, and immersibility: New game design elements that increase online game usage. International journal of information management, 75, 102732. 
Teplan, M. (2002). Fundamentals of EEG measurement. Measurement science review, 2(2), 1-11. 
Thakur, R., & Summey, J. H. (2007). e-Trust: Empirical insights into influential antecedents. Marketing Management Journal, 17(2), 67-80. 
Till, B. D., & Baack, D. W. (2005). Recall and persuasion: does creative advertising matter? Journal of Advertising, 34(3), 47-57. 
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460. 
Twyman, N. W., Stanley, S. M., Elrod, C. C., & Masters, T. M. (2023). The impact of perceived manipulation, motives, and ethicality in cause-related marketing: a CRM+ model. Journal of Marketing Theory and Practice, 31(3), 334-351. 
Van Laer, T., De Ruyter, K., Visconti, L. M., & Wetzels, M. (2014). The extended transportation-imagery model: A meta-analysis of the antecedents and consequences of consumers' narrative transportation. Journal of consumer research, 40(5), 797-817. 
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. Mis Quarterly, 157-178. 
Wegner, M., Schüler, J., & Budde, H. (2014). The implicit affiliation motive moderates cortisol responses to acute psychosocial stress in high school students. Psychoneuroendocrinology, 48, 162-168. 
Wu, P. C., Yeh, G. Y.-Y., & Hsiao, C.-R. (2011). The effect of store image and service quality on brand image and purchase intention for private label brands. Australasian Marketing Journal, 19(1), 30-39. 
Xu, B. (2020). A competitive resource: consumer-perceived new-product creativity. Journal of Product & Brand Management, 29(7), 999-1010. 
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權於全球公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信