| 系統識別號 | U0002-0607202414113500 |
|---|---|
| DOI | 10.6846/tku202400469 |
| 論文名稱(中文) | 微型管道水平軸風力機之外罩幾何形狀數值最佳化 |
| 論文名稱(英文) | Optimization of duct geometry for a micro ducted horizontal-axis wind turbine by numerical study |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 航空太空工程學系碩士班 |
| 系所名稱(英文) | Department of Aerospace Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 112 |
| 學期 | 2 |
| 出版年 | 113 |
| 研究生(中文) | 陳韋皓 |
| 研究生(英文) | WEI-HAO Chen |
| 學號 | 611430207 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2024-06-28 |
| 論文頁數 | 72頁 |
| 口試委員 |
指導教授
-
陳增源(tychen@mail.tku.edu.tw)
口試委員 - 歐陽寬(157459@mail.tku.edu.tw) 口試委員 - 張靜怡 |
| 關鍵字(中) |
水平軸風力機 田口法 數值模擬 擴散外罩 |
| 關鍵字(英) |
Micro wind turbine Taguchi method HAWT Flanged diffuser |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
現今社會科技發展日新月異,關於環境保護的議題也越來越重要。由於全球暖化,碳排放的議題和政策越來越受重視。為了能達成淨零排放,風能、太陽能等再生能源的研究及運用成為了首要目標。
本研究以田口法探討微型水平軸風力機在擴散外罩下,透過不同的參數組合,找到最佳的外罩幾何形狀設計。首先以Creo Parametric軟體繪製所需之風力機葉片及外罩的幾何外型,再透過商用計算流體力學軟體Flowvision模擬不同參數組合的外罩在風速10m/s和16m/s的流場中,關於集風效率及輸出功率具有何種表現。實驗葉片採用NACA4415翼型剖面,材質選用工程塑膠-尼龍。模擬後得出各組實驗之Cp最大值並進行比較,再透過田口法得出最佳化外形設計之參數。
根據因子效應得出各因子對外罩之集風效率的影響,並考慮因子間交互作用,結果顯示出各個因子間具強交互作用。在最佳化後得出在參數為噴嘴長度L1/D=0.1,噴嘴角度30°,擴散角度12°,Flange高度H/D=1及Flange角度18°時最好,並與最差(噴嘴長度L1/D=0.4,噴嘴角度22°,擴散角度12°,Flange高度H/D=0.1及Flange角度6°)進行比較,得出最佳化外罩集風效率比最差增加了35%;風機的輸出功率在最佳化外罩的影響下比最差的增加了150%~175%。
|
| 英文摘要 |
In today's society, science and technology are developing rapidly, and issues related to environmental protection are becoming more and more important. Due to global warming, carbon emission issues and policies have received increasing attention. In order to achieve net-zero emissions, the research and application of renewable energy sources such as wind energy and solar energy have become the primary goal. This study uses the Taguchi method to explore the optimal housing geometry design for micro-horizontal-axis wind turbines under diffuser housings through different parameter combinations. First, Creo Parametric software is used to draw the required geometric shapes of the wind turbine blades and housing, and then the commercial computational fluid dynamics software Flowvision is used to simulate the housing with different parameter combinations in the flow field with wind speeds of 10m/s and 16m/s.Regarding the performance of wind collection efficiency and output power.The experimental blade adopts NACA4415 airfoil profile, and the material is engineering plastic-nylon. After simulation, the maximum Cp value of each group of experiments is obtained and compared, and then the parameters of the optimal shape design are obtained through the Taguchi method. According to the factor effect, the influence of each factor on the wind collection efficiency of the outer cover is obtained, and the interaction between factors is considered. The results show that there is a strong interaction between the factors. After optimization, it is concluded that the parameters are nozzle length L1/D=0.1, nozzle angle 30°, diffusion angle 12°, flange height H/D=1 and flange angle 18°, which is the best, and is the same as the worst (nozzle length L1/D=0.4,, nozzle angle 22°, diffusion angle 12°, Flange height H/D=0.1 and Flange angle 6°), it is concluded that the air collection efficiency of the optimized cover is increased by 35% compared with the worst; the output power of the fan is under the influence of the optimized cover An increase of 150% to 175% compared to the worst. |
| 第三語言摘要 | |
| 論文目次 |
目錄 中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 vi 表目錄 viii 第一章、緒論 1 1.1研究動機 1 1.2風力發動機簡介 2 1.2.1水平軸風力機 3 1.2.2垂直軸風力機 3 1.3貝茲(Betz)定律 4 1.4研究目的 7 1.5文獻回顧 8 第二章、研究方法 11 2.1數值模式 11 2.1.1統御方程式 11 2.2田口法 11 2.2.1品質特性 14 2.2.2控制因子與干擾因子 14 2.2.3直交表 16 2.2.4訊號噪音比 18 第三章、數值模擬 19 3.1模擬流程 19 3.1.1實驗模型 19 3.1.2邊界條件 21 3.1.3 數值監測與收斂判定 22 3.1.4紊流模型 23 3.2模擬網格 25 3.2.1初始網格 25 3.2.2網格加密 26 3.2.3網格獨立性 28 第四章、結果與分析 30 4.1結果與田口法 30 4.1.1因子效應 31 4.1.2因子反應圖表 31 4.1.3因子交互作用 33 4.1.4最佳化 44 4.1.5確認 44 4.2最佳化與最差之比較 46 4.3外罩內速度比較 48 4.4流場與壓力分佈圖比較 49 第五章、結論與展望 54 5.1結論 54 5.2未來展望 55 參考文獻 57 附錄 論文簡要版 62 圖目錄 圖1全球新增風電裝置[1] 2 圖2水平軸風力機 3 圖 3垂直軸風力機 4 圖4田口法操作順序 13 圖5實驗外罩控制因子 15 圖6水平風力機尺寸(cm) 20 圖7計算模型尺寸(前視) 20 圖8計算模型尺寸(側視) 21 圖9計算模型邊界條件 22 圖 10 Slover監測變數設定 23 圖 11 數值監測視窗 23 圖12模型初始網格 26 圖13加密等級示意圖 27 圖14進階加密示意圖 28 圖15網格獨立性測試 29 圖16因子反應圖 32 圖17因子A與B之交互作用圖 34 圖18因子A與C之交互作用圖 35 圖19因子A與D之交互作用圖 36 圖20因子A與E之交互作用圖 37 圖21因子B與C之交互作用圖 38 圖22因子B與D之交互作用圖 39 圖23因子B與E之交互作用圖 40 圖24因子C與D之交互作用圖 41 圖25因子C與E之交互作用圖 42 圖26因子D與E之交互作用圖 43 圖 27參數確認之Cp-TSR曲線 45 圖28風速10m/s ,最佳化與最差之Cp-TSR曲線圖 47 圖 29風速16m/s ,最佳化與最差之Cp-TSR曲線圖 47 圖 30外罩內最佳化與最差喉部風速 49 圖 31最佳化流場流線圖 50 圖 32最差流場流線圖 50 圖 33最佳化與最差中心壓力分佈 51 圖 34最佳化與最差中心速度分佈 51 圖 35葉片表面壓力分佈 52 表目錄 表1實驗因子表 15 表2 L16(45)直交表 17 表3模型邊界條件設定 22 表 4 Slover監測變數設定 23 表5實驗模擬結果之Cp值S/N比 30 表6因子反應表 31 表7因子A與B之交互作用表 34 表8因子A與C之交互作用表 35 表9因子A與D之交互作用表 36 表10因子A與E之交互作用表 37 表11因子B與C之交互作用表 38 表12因子B與D之交互作用表 39 表13因子B與E之交互作用表 40 表14因子C與D之交互作用表 41 表15因子C與E之交互作用表 42 表16因子D與E之交互作用表 43 表17改變之因子參數 44 表18變更後之外罩參數 45 表19最佳化及最差之喉部風速 48 |
| 參考文獻 |
[1] 世界風能協會: https://gwec.net/ [2] 科技發展平台: https://outlook.stpi.narl.org.tw/index/focus-news/4b1141008969e3c0018994e7bfb612e8 [3] 經濟部能源署-能源知識庫: https://magazine.twenergy.org.tw/Cont.aspx?CatID=&ContID=2616 [4] Arumugam, P., Ramalingam, V., and Bhaganagar, K. 2021. A pathway towards sustainable development of small capacity horizontal axis wind turbines – Identification of influencing design parameters & their role on performance analysis. Sustain. Energy Technol. Assess. 44:1-32. [5] Al-Quraishi, B. A. J., Asmuin, N. Z. B., Mohd, S. B., al-wahid, W. A. A., Mohammed, A. N., and Didane, D. H. 2019. Review on diffuser augmented wind turbine (DAWT). Int. J. Integr. Eng. 11(1): 178-206. [6] Md Rabiul Awal, Muzammil Jusoh, Md. Nazmus Sakib, Fakir Sharif Hossain, Mohd Rashidi Che Beson, and Syed Alwee Aljunid, Design and Implementation of Vehicle Mounted Wind Turbine, ARPN Journal of Engineering and Applied Sciences, VOL. 10, NO 19, OCTOBER, 2015. [7] Su-Huei Chang, Qi-Hong Lim and Kuo-Hsin Lin, A Novel Hybrid Car Design using a Wind Energy Capturing Device, International Journal of simulation – systems, science & technology, vol. 15, issue 3, 2014. [8] Blaise Mtopi Fotso, Carlos Feudjio Nguefack, Roni-Claudin Talawo, Médard Fogue, Aerodynamic Analysis of an Electric Vehicle Equipped With Horizontal Axis Savonius Wind Turbines, International Journal of Recent Trends in Engineering & Research (IJRTER) Volume 05, Issue 06; June- 2019. [9] Chen, T. Y., Liao, Y. T., and Cheng, C. C. 2012. Development of small wind turbines for moving vehicles: Effects of flanged diffusers on rotor performance. Exp. Therm. Fluid Sci. 42: 136–142. [10] Chen, T. Y., Hung, C. W., Liao, Y. T., Experimental study on aerodynamics of micro-wind turbines with large-tip non-twisted blades. Journal of Mechanics, Vol. 29, No. 3, 2013. [11] Gaden D and Bibeau E (2010) A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model. Renewable Energy 35(6): 1152–1158. [12] Ohya Y, Karasudani T, Sakurai A, et al. (2008), “Development of a shrouded wind turbine with a flanged duct,” Journal of Wind Engineering and Industrial Aerodynamics 96(5): 524–539. [13] Mansour K and Meskinkhod P (2014) Computational analysis of flow fields around flanged ducts. Journal of Wind Engineering and Industrial Aerodynamics 124: 109–120. [14] R. F. Ghajar and E. A. Badr. An Experimental Study of a Collector and Diffuser System on a Small Demonstration Wind Turbine. Int. J. Mech. Eng. Educ., vol. 36, no. 1, (2008), pp. 58–68. [15] B. Kosasih and A. Tondelli, “Experimental study of shrouded micro-wind turbine. Procedia Eng., vol. 49, (2012), pp. 92–98. [16] R. A. Kishore, T. Coudron, and S. Priya. Small-scale wind energy portable turbine (SWEPT). J. Wind Eng. Ind. Aerodyn., vol. 116, (2013), pp. 21–31. [17] M. Kardous, R. Chaker, F. Aloui, and I. Abidi, “Locations of vortices and their impacts on the aerodynamic performances of a diffuser and a DAWT,” 3rd International Conference on Renewable Energies for Developing Countries (REDEC), (2016). [18] M. Kardous, R. Chaker, F. Aloui, and S. Ben Nasrallah, “On the dependence of an empty flanged diffuser performance on flange height: Numerical simulations and PIV visualizations,” Renew. Energy, vol. 56, (2013), pp. 123–128. [19] Heikal Hasim A, Abu-Elyazeed Osayed SM, Mohamed A, Nawar A, Attai Youssef A, Mohamed Maged MS, “On the actual power coefficient by theoretical developing of the diffuser flange of wind-lens turbine,” Renewable Energy; 2018. [20] B. A. Jabbar, “ Experimental and simulation study of a diffuser augmented wind turbine to enhance the performance by modifying diffuser and rotor,” Ph.D. Thesis, University Tun Hussein Onn, Malaysia, 2019. [21] Mohammad Ali Rahmatian, Amin Nazarian Shahrbabaki, Seyed Peyman Moeini, “Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine,” Energy 269 (2023) 126822 [22] Kwan Ouyang, Tzeng-Yuan Chen, Jun-Jie You (2024), “Utilizing the Taguchi Method to Optimize Rotor Blade Geometry for Improved Power Output in Ducted Micro Horizontal-Axis Wind Turbines,” Sustainability, 16 (11), 4692. [23] 游新儒,“田口法於微型水平軸風力發電機空氣動力特性之數值研究.”碩士論文,新北:淡江大學航空與太空工程學系,2023. [24] 洪呈緯,“微型風力發電機外罩與葉片效應之空氣動力特性探討.”碩士論文,新北: 淡江大學航空與太空工程學系,2012. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信