| 系統識別號 | U0002-0606202216273600 |
|---|---|
| DOI | 10.6846/TKU.2022.00149 |
| 論文名稱(中文) | 在無線感測網路中以調變傳輸速率為主的行動車資料收集技術 |
| 論文名稱(英文) | Mobile Data Collection Mechanism Using Transmission Rate Control in Wireless Sensor Networks |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 資訊工程學系博士班 |
| 系所名稱(英文) | Department of Computer Science and Information Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 110 |
| 學期 | 2 |
| 出版年 | 111 |
| 研究生(中文) | 陳世勇 |
| 研究生(英文) | Shi-Yong Chen |
| 學號 | 807414015 |
| 學位類別 | 博士 |
| 語言別 | 繁體中文 |
| 第二語言別 | 英文 |
| 口試日期 | 2022-06-10 |
| 論文頁數 | 45頁 |
| 口試委員 |
指導教授
-
張志勇(cychang@mail.tku.edu.tw)
口試委員 - 陳宗禧(chents@mail.nutn.edu.tw) 口試委員 - 陳裕賢(yschen@mail.ntpu.edu.tw) 口試委員 - 游國忠( 133742@mail.tku.edu.tw) 口試委員 - 廖文華(whliao@ntub.edu.tw) |
| 關鍵字(中) |
行動感測器 資料收集 機器類型通訊 傳輸速率 無線感測網路 |
| 關鍵字(英) |
Mobile sensor Data collection Machine type communication Transmission rate Wireless sensor network |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
資料收集是無線感測網路(Wireless Sensor Networks, WSNs)中最重要的應用之一。研究表明,使用移動感測器收集數據在無線感測網路的優勢顯著,譬如提高感測器節點的能量效益和延長網絡壽命。 然而,移動感測器的速度有限,從而導致較大的延遲,導致靜態感測器節點存在數據新鮮度或緩衝區溢出等問題。 為了减少移動感測器拜訪靜態感測節點的路徑長度,本研究提出了一種以調變傳輸速率為主的資料收集算法。 本研究不僅保證了每個靜態節點資料傳輸的完整性,而且透過為每個靜態感測器使用合適的傳輸速率,减少了移動感測器移動路徑的長度。最後,透過效能評估,該方法可以顯著縮短移動感測器的路徑長度,並且能够完整有效地採集每個感測器的數據。 |
| 英文摘要 |
Data collection is one of the most basic and important applications in wireless sensor networks. Recent studies have shown that the use of mobile sensors to collect data has brought many benefits to wireless sensor networks, such as improving the energy efficiency of sensor nodes and extending the network lifetime. However, the limited speed of mobile sensors leads to large delay, resulting in data freshness or buffer overflow problems in static sensor nodes. Based on adaptive rate control, a data collection algorithm is proposed to reduce the length of mobile path when mobile sensors collect data from static sensor nodes. The algorithm not only ensures the integrity of data collection of each static node, but also reduces the length of the mobile sensor's moving path by using the appropriate transmission rate for each static sensor. Through a large number of simulations, the experimental results show that our method can significantly shorten the path length of mobile sensors, and can collect the data of each sensor completely and effectively. |
| 第三語言摘要 | |
| 論文目次 |
List of Figures IV List of Tables V Chapter 1. Introduction - 1 - Chapter 2. Related Works - 5 - Chapter 3. Network Environment and Problem Statement - 9 - 3.1 Network Environment - 9 - 3.2 Problem Statement - 11 - Chapter 4. Data Collection Algorithm - 14 - 4.1 Construct Initial Path Phase - 15 - 4.2 Path Reduction Phase - 18 - 4.3 The Proposed MDCM Algorithm - 29 - Chapter 5. Performance Evaluation - 31 - Chapter 6. Conclusions - 42 - References - 43 - Fig. 1. The radius of each ring region corresponds to the distance of each modulation mode. - 19 - Fig. 2. The radius of each ring region corresponds to the distance of each modulation mode. - 21 - Fig. 3. The example of data collection segment gi of sensor si. - 23 - Fig. 4. All sensors are partitioned into several group. - 25 - Fig. 5. The construction of segment gi for sensor si. - 26 - Fig. 6. The data collection segment gi of all sensors si can be constructed. - 26 - Fig. 7. Connect all segments of the sensors. - 28 - Fig. 8. The procedure of Mobile Data Collection Algorithm. - 30 - Fig. 9. Compare the path length of three algorithms in a round. - 33 - Fig. 10. Compare the effective index with different data volume of three algorithms. - 34 - Fig. 11. Compare the effective index and buffer size of three algorithms by 20 CPs. - 35 - Fig. 12. Compare the improvement ratio of ANN&GA. - 37 - Fig. 13. Compare the improvement ratio of CORL2. - 38 - Fig. 14. Impact of the number of sensors on the network lifetime by applying difference algorithms. - 39 - Fig. 15. Impact of the number of sensors on the energy consumption of mobile sensor by applying difference algorithms. - 40 - Fig. 16. Comparison of energy consumptions of three algorithms. - 41 - Table I Machine type communication (MTC) - 2 - Table II Simulation Setting - 31 - |
| 參考文獻 |
[1] P. Chanak and I. Banerjee, “Congestion free routing mechanism for IoT-enabled wireless sensor networks for smart healthcare applications,” IEEE Trans. Consum. Electron., vol. 66, no. 3, pp. 223–232, Aug. 2020. [2] G. Yang and H. Liang, “A smart wireless paging sensor network for elderly care application using LoRaWAN,” IEEE Sensors J., vol. 18, no. 22, pp. 9441–9448, Nov. 2018. [3] C. Shang, C.-Y. Chang, G. Chen, S. Zhao, and H. Chen, “BIA: Behavior identification algorithm using unsupervised learning based on sensor data for home elderly,” IEEE J. Biomed. Health Informat., vol. 24, no. 6, pp. 1589–1600, Jun. 2020. [4] C. Shang, C.-Y. Chang, J. Liu, S. Zhao, and D. Sinha Roy, “FIID: Feature-based implicit irregularity detection using unsupervised learning from IoT data for homecare of elderly,” IEEE Internet Things J., vol. 7, no. 11, pp. 10884–10896, Nov. 2020 [5] M. T. Lazarescu and P. Poolad, “Asynchronous resilient wireless sensor network for train integrity monitoring,” IEEE Internet Things J., vol. 8, no. 5, pp. 3939–3954, Mar. 2021. [6] W. Wen, S. Zhao, C. Shang, and C.-Y. Chang, “EAPC: Energy-aware path construction for data collection using mobile sink in wireless sensor networks,” IEEE Sensors J., vol. 18, no. 2, pp. 890–901, Jan. 2018. [7] T. M. Behera, S. K. Mohapatra, U. C. Samal, M. S. Khan, M. Daneshmand, and A. H. Gandomi, “I-SEP: An improved routing protocol for heterogeneous WSN for IoT-based environmental monitoring,” IEEE Internet Things J., vol. 7, no. 1, pp. 710–717, Jan. 2020. [8] G. Li et al., "Energy Efficient Data Collection in Large-Scale Internet of Things via Computation Offloading," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4176-4187, Jun. 2019. [9] Y. Wang and K. Chen, "Efficient Path Planning for a Mobile sensor to Reliably Gather Data from Sensors with Diverse Sensing Rates and Limited Buffers," IEEE Transactions on Mobile Computing, vol. 18, no. 7, pp. 1527-1540, Jul. 2019. [10] M. A. Aydin, B. Karabekir and A. H. Zaim, "Energy Efficient Clustering-Based Mobile Routing Algorithm on WSNs," IEEE Access, vol. 9, pp. 89593-89601, Jun. 2021. [11] B. Kabakulak, "Sensor and Sink Placement, Scheduling and Routing Algorithms for Connected Coverage of Wireless Sensor Networks," Ad Hoc Networks, vol. 86, no. 3, pp. 83–102, Apr. 2019. [12] K. Liu et al., "An Active Mobile Charging and Data Collection Scheme for Clustered Sensor Networks," IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 5100-5113, May. 2019. [13] W. Wen, C. -Y. Chang, S. -J. Wu and D. S. Roy, "CORL2: Exploring Cooperative Opportunities, Reducing Latency and Prolonging Network Lifetime for Data Collection Using Mobile Sinks in Wireless Sensor Networks," IEEE Sensors Journal, vol. 21, no. 17, pp. 19596-19610, Sep. 2021. [14] G. Han, H. Wang, X. Miao, L. Liu, J. Jiang and Y. Peng, "A Dynamic Multipath Scheme for Protecting Source-Location Privacy Using Multiple Sinks in WSNs Intended for IIoT," IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5527-5538, Aug. 2020. [15] Srinivas, M., Amgoth, T., " Data acquisition in large-scale wireless sensor networks using multiple mobile sinks: a hierarchical clustering approach," Wireless Networks, vol. 28, no. 2, pp. 603–619, Jan. 2022. [16] H. Byun, "Mobile Collector-Based Cost Balancing Scheme for Uniform Data Gathering Delay and Energy Consumption in Wireless Sensor Actuator Networking Systems," IEEE Sensors Journal, vol. 20, no. 8, pp. 4260-4268, Apr. 2020. [17] P. K. Donta, B. S. P. Rao, T. Amgoth, C. S. R. Annavarapu and S. Swain, "Data Collection and Path Determination Strategies for Mobile Sink in 3D WSNs," IEEE Sensors Journal, vol. 20, no. 4, pp. 2224-2233, Feb. 2020. [18] "IEEE Std 802.15.4", Wireless Medium Access Control (MAC) and Physical Layer (PRY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs), May. 2003. [19] B. R. Al-Kaseem, Z. K. Taha, S. W. Abdulmajeed and H. S. Al-Raweshidy, "Optimized Energy – Efficient Path Planning Strategy in WSN With Multiple Mobile Sinks," IEEE Access, vol. 9, pp. 82833-82847, Jun. 2021. [20] X. He, X. Fu and Y. Yang, "Energy-Efficient Trajectory Planning Algorithm Based on Multi-Objective PSO for the Mobile Sink in Wireless Sensor Networks," IEEE Access, vol. 7, pp. 176204-176217, Dec. 2019. [21] C. Punriboon, C. So-In, P. Aimtongkham and N. Leelathakul, "Fuzzy Logic-Based Path Planning for Data Gathering Mobile Sinks in WSNs," IEEE Access, vol. 9, pp. 96002-96020, Jul. 2021. [22] X. Gu, X. Zhou, B. Yuan and Y. Sun, "A Bayesian Compressive Data Gathering Scheme in Wireless Sensor Networks With One Mobile sensor," IEEE Access, vol. 6, pp. 47897-47910, Aug. 2018. [23] W. Wen, C.-Y. Chang, S. Zhao, and C. Shang, “Cooperative Data Collection Mechanism Using Multiple Mobile sensors in Wireless Sensor Networks,” Sensors, vol. 18, no. 8, pp. 2627-2646, Aug. 2018. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信