§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0507202114261500
DOI 10.6846/TKU.2021.00124
論文名稱(中文) 新冠肺炎疫情期間美食外送平台用戶持續使用意願之研究
論文名稱(英文) The study of understanding food delivery apps users’ continuance intention during the COVID-19 crisis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 企業管理學系碩士在職專班
系所名稱(英文) Department of Business Administration
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 陳俐妏
研究生(英文) Li-Wen Chen
學號 708610216
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-06-04
論文頁數 41頁
口試委員 指導教授 - 吳坤山
委員 - 張敬珣
委員 - 李月華
委員 - 吳坤山
關鍵字(中) 新冠肺炎
美食外送平台
整合性科技接受模型
期望確認模型
持續使用意願
關鍵字(英) COVID-19
food delivery app
unified theory of acceptance and use of technology
expectancy confirmation model
continuance intention
第三語言關鍵字
學科別分類
中文摘要
新冠肺炎大流行期間,美食外送平台的「互聯網+餐廳」模式不僅滿足了餐飲企業的需求,也滿足了消費者對方便高效的食品供應和人身安全的擔憂。本論文主要結合整合性科技接受模型(Unified Theory of Acceptance and Use of Technology, UTAUT)及期望確認模型(Expectancy Confirmation Model, ECM)模型,並將信任和習慣等心理和認知因素變數加入到所建構的研究模型中,調查並分析新冠肺炎流行期間台灣美食外送平台用戶持續使用的意願,進而了解用戶的認知與行為,並提供美食外送平台利益相關者有效地制定相關策略,從而提升用戶持續使用美食外平台的意願。
本論文以居住在台灣地區有使用過美食外送平台的用戶為研究對象,並以便利抽樣方式進行抽樣,共計發出了350份問卷,回收了333份有效樣本,總計有效樣本回收率為95.1%。透過描述性統計、驗證性因素分析、結構方程模型等方法來驗證本研究所提出之各項假設,其主要研究結果如下:
1. 績效期望、滿意度與習慣均顯著正向影響COVID-19流行期間FDAs的持續使用意願,其中以習慣對FDAs的持續使用意願的影響最為顯著,其次為滿意度與績效期望。
2. 滿意度是影響美食外送平台的持續使用意願的第二大關鍵因素。
3. 績效期望與滿意度解釋了期望確認對顧客繼續使用FDAs的意願和心理效應。
4. 績效期望由期望確認測定,同時對滿意度和持續使用意願具有顯著的正向影響作用。
5. 社會影響對持續使用美食外送平台意願沒有直接的影響。
6. 信任對持續使用美食外送平台意願沒有直接的影響。
綜合上述結論,本研究建議美食外送平台須滿足客戶的實際期望,形成有用的技術和技術靈感改善用戶體驗,確保提供準確和及時的穩定性訂購和交付服務、與安全和品質保證,進而建立美食外送平台的可靠聲譽,以增加客戶的信任,從而提升用戶滿意度,進而提高其持續使用美食外送平台意願。
英文摘要
The "Internet + restaurant" model of the food delivery platform not only met the needs of catering companies, but also met consumers' concerns about convenient and efficient food supply and personal safety during the COVID-19 pandemic. This thesis mainly combines the Unified Theory of Acceptance and Use of Technology (UTAUT) Model and Expectation Confirmation Model (ECM) model, and adds the psychological and cognitive variables such as trust and habit into the constructed research model to investigate and analyze the continuance intention of users of Taiwan food delivery platform amid the COVID-19 epidemic period, so as to understand users' cognition and behavior, and provide stakeholders of food delivery platform to formulate relevant strategies effectively. In this way, users will continue to use the platform outside gourmet.
This thesis takes the users who have used the food delivery apps (FDAs) in Taiwan as the research object. Convenience sampling is applied in the research, a total of 350 questionnaires are distributed, and 333 valid questionnaires are returned, resulting in an effective return rate of 95.1%. Descriptive statistics, confirmatory factor analysis, structural equation modeling were used to verify the hypotheses proposed in this study.
The main research results are as follows:
1.	Performance expectation, satisfaction and habit had significant positive effects on the continence usage intention of FDAs during the COVID-19 pandemic. Wherein habit had the most substantial influence on the continuance intention, followed by satisfaction and performance expectation.
2.	Satisfaction is the second key factor affecting the continuance usage intention of FDAs.
3.	Performance expectation is determined by confirmation and simultaneously plays a vital predictor role in influencing satisfaction and continuance intention positively.
4.	Social influence had no direct influence on the continuance usage intention of FDAs.
5.	Trust had no direct influence on the continuance usage intention of FDAs.
Comprehensive the above conclusions, this study suggested that food delivery platform must meet the expectations of clients, form a useful inspiration to improve the user experience that ensures the stability of providing accurate and timely ordering and delivery service, and safety and quality assurance, and then establish a food delivery platform reliable reputation, in order to increase the trust of the customers, so as to improve customer satisfaction, And then improve their willingness to continue to use the food delivery platform.
第三語言摘要
論文目次
目錄Ⅰ
表目錄Ⅲ
圖目錄IV
第一章 緒論1
第一節 研究背景與動機1
第二節 研究目的3
第三節 章節結構3
第二章 文獻探討5
第一節 台灣美食外送平台服務發展現況5
第二節 台灣美食外送平台服務研究現況6
第三節 UTAUT與ECM理論概述9
第四節 理論模型建構10
第三章 研究設計與方法12
第一節 研究架構12
第二節 研究假設12
第三節 研究變數衡量工具18
第四節 研究對象與樣本抽樣方式22
第五節 資料分析方法22
第四章 資料分析結果24
第一節 回收樣本描述24
第二節 驗證方程模型分析25
第五章 結論與建議29
第一節 研究發現與管理意涵29
第二節 研究限制31
第三節 研究限制31
參考文獻32
一、中文部分32
二、英文部分33
附錄:正式問卷40

表目錄
表2-1 美食外送平台持續使用意願研究現況7
表2-2 影響美食外送平台持續使用意願研究變數彙整表8
表4-1 回收樣本描述性分析統計24
表4-2 驗證性分析結果彙整25
表4-3 研究構面的負荷量-跨負荷量矩陣26
表4-4 研究構面描述性統計與相關係數矩陣27
表4-5 研究模型路徑分析結果表28
表5-1 研究假設資料彙整29

圖目錄
圖3-1 研究架構圖12
圖4-1 研究變數之因果關係路徑圖28
參考文獻
一、中文部分
Ipsos 益普索市場研究(2020)。新冠肺炎顛覆了食品消費行為 ,品牌與零售業者如何讓顧客一再回流? https://www.ipsos.com/en-tw/solution/overview#category3。上網日期:2020年12月3日。
未來流通研究所(2020)。【產業地圖圖解】一張圖看懂2020台灣「餐飲外送平台」產業版圖。https://www.mirai.com.tw/2020-taiwan-food-delivery-industry-competition-map/。上網日期:2020年12月3日。
吳凌峰(2019)。網路外賣使用者持續使用意願因素研究—以 M 平台 X 地區為例。電子科技大學工商管理專業學位碩士學位論文。
徐境(2018)。移動外賣APP用戶持續使用意願的實證研究。中國科學技術大學工商管理碩士學位論文。
陳立峻(2020)。持續使用線上訂餐平台之研究。國立高雄科技大學資訊管理系碩士論文。
陳惠屏(2017)。以整合性科技接受模型探討線上訂餐外送系統的成功因素。國立中興大學科技管理研究所碩士論文。
陳珈云(2019)。探討持續使用與衝動購買之影響因素-以外送APP為例。淡江大學會計學系碩士班碩士論文。
黃首儒(2020)。探討影響消費者使用行動食品外送應用平台的滿意度與持續使用意願。東吳大學企業管理學系碩士論文。
夏利君(2018)。O2O外賣消費者持續購買意願影響因素研究。杭州電子科技大學管理科學與工程碩士學位論文。
齊有為(2019)。在線外賣顧客重複購買行為研究。鄭州大學管理科學與工程碩士學位元論文。
楊晨欣(2019)。外送 App 全球十強是誰?經濟規模多大?一圖看美食外送市場的未來。經理人雜誌,2019年10月29日。
資策會產業情報研究所(2020)。Over 50% of Taiwanese Netizens Order Food Delivery and 11% Order for the First Time in 1H 2020: MIC. Retrieved 3 December 2020 from https://mic.iii.org.tw/english/PressRelease_Detail.aspx?sqno=13044&type=Press
凱度(2020)。COVID-19疫情特輯:疫情帶來餐飲寒冬美食外送平台逆勢成長。Retrieved 4 December 2020 from http://tns-global.com.tw/MailSources/InfoPulse/2020/COVID-19/Kantar_Taiwan_COVID-19_Report2_Food_Delivery.pdf

二、英文部分
Alharbi, S. T. (2014). Trust and acceptance of cloud computing: A revised UTAUT model. In Proceedings - 2014 International Conference on Computational Science and Computational Intelligence, CSCI 2014, 2, 131–134. doi: 10.1109/CSCI.2014.107
Almazroa, M., & Gulliver, S. (2018). Understanding the usage of mobile payment systems- The impact of personality on the continuance usage. 2018 4th International Conference on Information Management (ICIM). DOI: 10.1109/INFOMAN.2018.8392833
Alshurideh, M., Al Kurdi, B., & Salloum, S.A. (2020). Examining the main mobile learning system drivers’ effects: A mix empirical examination of both the expectation-confirmation model (ECM) and the technology acceptance model (TAM). Advances Intelligent Systems Computing, 1058, 406–417
Anderson, J.C., & Gerbing, D.W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. 
Anderson, J.E., Schwager, P.H., & Kerns, R.L. (2006). The drivers for acceptance of Tablet PCs by faculty in a college of business. Journal of Information Systems Education, 17(4), 429-440.
Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 25 (3), 351–370
Cao, X., Yu, L., Liu, Z., Gong, M., & Adeel, L. (2018). Understanding mobile payment users’ continuance intention: a trust transfer perspective. Internet Research, 28 (2), 456–476.
Cheng, C.T. (2020). Food-delivery businesses prosper in Taiwan amid pandemic. Retrieved 1 December 2020 from https://www.taiwannews.com.tw/en/news/4064515
Cho, M., Bonn, M.A., & Li, J. (2019). Differences in perceptions about food delivery apps between single-person and multi-person households. International Journal of Hospitality Management, 77, 108–116.
Chong, A.Y.L. (2013). Understanding mobile commerce continuance intentions: an empirical analysis of Chinese consumers. Journal of Computer Information Systems, 53 (4), 22–30.
Chopdar, P.K., & Sivakumar, V.J. (2019). Understanding continuance usage of mobile shopping applications in India: the role of espoused cultural values and perceived risk. Behaviour and Information Technology, 38 (1), 42–64.
Dlodlo, N. (2014). The relationships among service quality, Trust, User satisfaction and post-adoption intentions in M-payment services. Mediterranean Journal of Social Sciences, 5 (23), 165–175.
Elvandari, C.D.R., Sukartiko, A.C., & Nugrahini, A.D. (2017). Identification of technical requirement for improving quality of local online food delivery service in Yogyakarta. Journal of Industrial and Information Technology in Agriculture, 1 (2), 1-6.
Fang, I.C., & Fang, S.C. (2016). Factors affecting consumer stickiness to continue using mobile applications. International Journal of Mobile Communications, 14 (5), 431–453
Fornell, C., & Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. 
Fu, Jen-Ruei (2006). VISUAL PLS 1.04b1. http://www2.kuas.edu.tw/prof/fred/vpls/index.html.
Gao, L., Waechter, K.A., & Bai, X. (2015). Understanding consumers’ continuance intention towards mobile purchase: a theoretical framework and empirical study - A case of China. Computers in Human Behavior, 53, 249–262
Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725–737
Gilitwala, B., & Nag, A.K. (2019). A study of factors influencing repurchase intention of online food delivery in Bangkok, Thailand. International Journal on Emerging Technologies, 10(3), 193-201.
Hair, J., Hult, G. T., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). (2nd ed.). Thousand Oaks: Sage.
Hair, J., Ringle, C., & Sarstedt, M. (2011). PLS-SEM: Indeed, a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. 
Hong, I.B., & Cha, H.S. (2013). The mediating role of consumer trust in an online merchant in predicting purchase intention. International Journal of Information Management, 33(6), 927-939.
Hsiao, C.H., Chang, J.J., & Tang, K.Y. (2016). Exploring the influential factors in continuance usage of mobile social apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33, 342–355.
Hsu, M.H., Chang, C.M., & Chuang, L.W. (2015). Understanding the determinants of online repeat purchase intention & moderating role of habit, the case of online group-buying in Taiwan. International Journal of Information Management, 2015, 35, 45–56.
Hung, M.C., Yang, S.T., & Hsieh, T. (2012). An examination of the determinants of mobile shopping continuance. International Journal of Electronic Business Management, 10 (1), 29–37.
Imarc (2020). Global online food delivery market to reach US$ 164.5 billion by 2024, stimulated by development of user-friendly applications. Retrieved 3 December 2020 from https://www.imarcgroup.com/global-online-food-delivery-market.
Isaac, O., Abdullah, A., Aldholay, A.H., & Abdulbaqi Ameen, A. (2019). Antecedents and outcomes of internet usage within organisations in Yemen: An extension of the Unified Theory of Acceptance and Use of Technology (UTAUT) model. Asia Pacific Management Review, 24(4), 335–354. doi: 10.1016/j.apmrv.2018.12.003
Israel, D.J. (2019). Consumer's intention to continuous use of mobile food delivery aggregator App. Jour of Adv Research in Dynamical & Control Systems, 11(7), 119-128.
Izzati, B.M. (2020). Analysis of customer behaviour in mobile food ordering application using UTAUT model (Case Study: GoFood). International Journal of Innovation in Enterprise System, 4(1), 23-34. 
Kang, S. (2014). Factors influencing intention of mobile application use. International Journal of Mobile Communications, 12 (4), 360–379.
Kang, J.W., & Namkung, Y. (2019). The role of personalization on continuance intention in food service mobile apps-A privacy calculus perspective. International Journal of Contemporary Hospitality Management, 31(2), 734-752
Khalilzadeh, J., Ozturk, A.B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460–474
Lee, J.H. (2019). Effects of service and mobile App quality on customer satisfaction and repurchase intention in the context of O2O food delivery services in Korea and China. Test Engineering and Management, 81, 335-345.
Lee, Y., & Kwon, O. (2011). Intimacy, familiarity and continuance intention: an extended expectation-confirmation model in web-based services. Electronic Commerce Research and Applications, 10 (3), 342–357.
Lee, S.W., Sung, H.J., & Jeon, H.M. (2019). Determinants of continuous intention on food delivery Apps: Extending UTAUT2 with information quality. Sustainability, 11, 3141-3156.
Li´ebana-Cabanillas, F., Mu˜noz-Leiva, F., S´anchez-Fern´andez, J., & Viedma-Del Jesús, M.I. (2016). The moderating effect of user experience on satisfaction with electronic banking: empirical evidence from the Spanish case. Information Systems and e-Business Management, 14 (1), 141–165.
Limayem, M., Hirt, S.G., & Cheung, C.M.K. (2007). How habit limits the predictive power of intentions: The case of information systems continuance. MIS Quarterly, 31, 705–737
Ma, Y. (2020). Coronavirus impact on food delivery app usage in Taiwan 2020. Retrieved 3 December 2020 from https://www.statista.com/statistics/1150465/taiwan-coronavirus-covid19-impact-on-food-delivery-app-usage/
Mahapatra, S. (2017). Mobile shopping among young consumers: an empirical study in an emerging market. International Journal of Retail & Distribution Management, 45(9), 930-949.
Marinkovi´c, V., Đorđevi´c, A., & Kalini´c, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: a UTAUT based perspective. Technology Analysis and Strategic Management, 32 (3), 306–318.
Oliver, R.L. (1980). A cognitive model of the antecedents and consequences of satisfaction decision. Journal of Marketing Research, 17, 460-469.
Oliveira, T., Faria, M., Thomas, M.A., & Popoviˇc, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34 (5), 689–703.
Pigatto, G., Machado, J.G., Negreti, A., & Machado, L. (2017). Have you chosen your request? Analysis of online food delivery companies in Brazil. British Food Journal, 119(3), 639-657.
Ray, A., Dhir, A., Bala, P.K., & Kaur, P. (2019). Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. Journal of Retailing and Consumer, 51, 221–230.
Roh, M., & Park, K. (2019). Adoption of O2O food delivery services in South Korea: the moderating role of moral obligation in meal preparation. International Journal of Information Management, 47, 262–273.
Roscoe, J.T. (1975). Fundamental Research Statistics for the Behavioral Sciences. (2nd Ed.). New York: Holt, Rinehart and Winston.
Sekaran, U., & Bougie, R. (2010). Research methods for business: A skill-building approach (5th ed.). Haddington: John Wiley & Sons.
Serben, D.F. (2014). The examination of factors influencing social media usage by African American small business owners using the UTAUT model. ProQuest LLC, Ph.D. Dissertation, Capella University.
Shao, Z., Zhang, L., Li, X., & Guo, Y. (2018). Antecedents of trust and continuance intention in mobile payment platforms: the moderating effect of gender. Electronic Commerce Research and Applications, 33, 100823.
Shaw, N., & Sergueeva, K. (2019). The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. International Journal of Information Management, 45, 44–55. 
Singh, M., & Matsui, Y. (2017). How long tail and trust affect online shopping behavior: An extension to UTAUT2 framework. Pacific Asia Journal of the Association for Information Systems, 9, 1–24. 
Statista (2020). Year-over-year daily change in seated restaurant diners due to the coronavirus (COVID-19) pandemic worldwide from February 24 to November 28, 2020. Retrieved 3 December 2020 from https://www.statista.com/statistics/1103928/coronavirus-restaurant-visitation-impact/
Susanto, A., Chang, Y., & Ha, Y. (2016). Determinants of continuance intention to use the smartphone banking services: An extension to the expectation-confirmation model. Industrial Management & Data Systems, 116 (3), 508–525
Tam, C., Santos, D., & Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile apps: Extending the Expectation confirmation model. Information Systems Frontiers, 22, 243–257.
Thomala, L.L. (2020). Frequency of ordering food from food delivery apps in Taiwan 2020. Retrieved 4 December 2020 from https://www.statista.com/statistics/1149271/taiwan-frequency-of-order-from-food-delivery-apps/
Venkatesh, V., Smith, R.H., Morris, M.G., Davis, G.B., Davis, F.D., & Walton, S.M. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Thong, J.Y., Chan, F.K., Hu, P.J.H., & Brown, S.A. (2011). Extending the two stage information systems continuance model: incorporating UTAUT predictors and the role of context. Information Systems Journals, J. 21 (6), 527–555.
Venkatesh, V.L., Thong, J.Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36, 157–178
Verplanken, B., Aarts, H., & Van Knippenberg, A. (1997). Habit, information acquisition, and the process of making travel mode choices. European Journal of Social Psychology, 27(5), 539-560.
WHO (2020a). WHO Coronavirus Disease (COVID-19) Dashboard. Retrieved 3 December 2020 from https://covid19.who.int/
WHO (2020b). WHO, Coronavirus Disease (COVID-19) Advice for the Public. Retrieved 3 December 2020 from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public.
Yeo, V.C.S., Goh, S.K., & Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing Consumer Services, 35, 150–162.
Yuan, S., Liu, Y., Yao, R., & Liu, J. (2016). An investigation of users’ continuance intention towards mobile banking in China. Information Development, 32 (1), 20–34.
Zhao, Y., & Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? International Journal of Hospitality Management, 91, 102683.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26 (4), 760–767.
Zhu, D.H., Lan, L.Y., & Chang, Y.P. (2017). Understanding the intention to continue use of a mobile payment provider: an examination of Alipay Wallet in China. International Journal of Business Information Systems, 12 (4), 369–390.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信