系統識別號 | U0002-0407202323324800 |
---|---|
DOI | 10.6846/tku202300306 |
論文名稱(中文) | 基於超寬頻技術之智慧社區訪客管理系統 |
論文名稱(英文) | Smart Community Visitor Management System based on Ultra-Wideband Technology |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 111 |
學期 | 2 |
出版年 | 112 |
研究生(中文) | 彭睿宇 |
研究生(英文) | Jui-Yu Peng |
學號 | 610410119 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2023-06-20 |
論文頁數 | 46頁 |
口試委員 |
指導教授
-
林其誼(chiyilin@mail.tku.edu.tw)
口試委員 - 蔡智強(jichiangt@nchu.edu.tw) 口試委員 - 林振緯(jwlin@csie.fju.edu.tw) |
關鍵字(中) |
物聯網 超寬頻 室內定位 訪客管理 |
關鍵字(英) |
Internet of Things Ultra-Wideband Indoor Positioning Visitor Management |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
提到定位的技術,大多數人會想到的是全球定位系統(Global Positioning System,簡稱 GPS),但由於其定位精度受環境影響,尤其是在室內場景或密集大樓,會導致衛星信號接收不良。因此,若要進行室內定位,勢必要找尋其他技術來填補 GPS 在這方面的不足,而 Wi-Fi、藍牙(Bluetooth)、超寬頻(Ultra-Wideband,簡稱 UWB)等技術恰好符合這方面的需要。這些技術也隨著物聯網的快速發展,逐漸被應用在智慧家庭、智慧建築、智慧城市等場域。 UWB 是一種能在極短的時間內發送超過 500MHz 以上寬帶的脈衝信號,這些脈衝信號的持續時間僅為數納秒或更短。這種特性使 UWB 能夠在頻譜中佔用寬廣的頻帶,同時避免與 Wi-Fi 或是 Bluetooth 等其他無線通信系統之間的干擾。另外,UWB 技術還具有抗多路徑衰減的能力。具體而言,由於無線信號在室內環境中會發生多重反射和散射,導致信號到達接收器存在多個路徑,這種現象稱為多路徑衰減。而 UWB 技術能夠利用多路徑信號的到達時間差異,進行信號處理和定位算法,以消除或減少多路徑衰減對定位精度的影響。 由於目前大部分社區採用 RFID、NFC 等近距離感應的磁卡,開放外賓、外送員等訪客持有並進入社區,但往往持有的磁卡可進出之大樓與樓層無法有效限制,形成社區安全的隱憂。因此,本研究當中我們透過 DWM1001-DEV 開發板進行 UWB 錨點與標籤之實作,讓訪客持有標籤,而社區各門禁作為錨點,再利用樹莓派(Raspberry Pi)與錨點相互通訊,取得各錨點以及標籤的資訊,並利用數學公式計算錨點與標籤之間的估算距離,並即時地上傳至資料庫,而社區管理員可透過網頁進行標籤登記、時效限制,藉此提高社區安全度,並方便訪客進出。 |
英文摘要 |
When it comes to positioning technology, most people think of the Global Positioning System (GPS). However, the positioning accuracy of GPS is affected by the environment, especially in indoor scenes or dense buildings, because of poor satellite signal reception. Therefore, for indoor positioning, it is necessary to use other technologies to fill the shortcomings of GPS in this regard, among which Wi-Fi, Bluetooth, Ultra-Broadband(UWB) and some other technologies just meet this need. With the rapid development of the Internet of Things, these technologies are gradually applied in smart homes, smart buildings, smart cities and other fields. UWB is a pulse signal capable of sending more than 500MHz within a very short period, and the duration of these pulse signals is only a few nanoseconds or less. This feature allows UWB to utilize a wide frequency band in the spectrum while avoiding interference with other wireless communication systems such as Wi-Fi or Bluetooth. In addition, UWB technology has the ability to resist multipath attenuation. Specifically, because wireless signals are reflected and scattered in the indoor environment, there are multiple paths for the signal to reach the receiver, a phenomenon known as multipath attenuation. The UWB technology can use the difference in arrival time of multipath signals to carry out signal processing and positioning algorithms to eliminate or reduce the impact of multipath attenuation on positioning accuracy. Nowadays most of the communities use RFID, NFC and other proximity magnetic cards for access control. With such cards in hand, visitors are able to pass the access control points and enter the community. However, without proper management, the access cards can be used to enter all the buildings and floors in the community, forming a hidden concern for community security. Therefore, in this study, we implement a UWB-based community visitor management system that can grant access according to where the visitor intends to go. Specifically, we use the DWM1001-DEV development boards to implement UWB anchors and tags. Visitors hold the UWB tags as the access cards, and the UWB anchors deployed at the access control points can detect the presence of UWB tags. Moreover, anchors are able to communicate with each other and calculate the estimated distance between anchors and tags. Our community visitor management system also offers a web interface, by which the community manager can register the UWB tags for the visitors easily. With our system, visitors can only reach the location he/she intends to go, and the access control is effective only within the predefined period of time. |
第三語言摘要 | |
論文目次 |
目錄 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與動機 2 1.3 論文架構 2 第二章 技術背景與相關研究 4 2.1 定位方法 4 2.1.1 到達角度(Angle of Arrival, AoA) 4 2.1.2 到達時間(Time of Arrival, ToA) 5 2.1.3 到達時間差(Time Difference of Arrival, TDoA) 6 2.1.4 通道狀態資訊(Channel State Information, CSI) 7 2.1.5 接收訊號強度指示(Received Signal Strength Indicator, RSSI) 8 2.2 超寬頻(Ultra-Wideband, UWB) 10 2.3 DWM1001 Two-Way-Ranging Real Time Location System(DRTLS) 12 2.3.1 雙向測距法(Two Way Ranging, TWR) 13 2.3.2 Superframe封包格式 14 2.3.3 DRTLS效能表現 15 2.4 相關研究 15 第三章 系統架構與研究方法 18 3.1 相關硬體介紹 18 3.2 系統架構 19 3.3 系統運作流程 20 第四章 系統實作與功能展示 22 4.1 實驗環境 22 4.2 定位系統 24 4.2.1 DRTLS Manager R2 24 4.2.2 Listener與Raspberry Pi 3B+連接 28 4.2.3 Anchors、Listener 29 4.2.4 Tags 32 4.2.5 判斷Tags的位置 34 4.2.6 LED顯示 34 4.3 管理系統 35 4.3.1 Google Firebase 35 4.3.2 後端架設 36 4.3.3 前端網頁呈現 37 4.4 實驗測試 38 第五章 結論與未來展望 42 5.1 結論 42 5.2 未來展望 42 參考文獻 44 圖目錄 圖2.1 1 AoA定位示意圖 5 圖2.1 2 ToA定位示意圖 6 圖2.1 3 TDoA定位示意圖 7 圖2.1 4 CSI示意圖[7] 8 圖2.1 5 RSSI 定位示意圖 9 圖2.2 1 UWB與各技術比較圖[11] 11 圖2.3 1 DRTLS系統[12] 13 圖2.3 2雙向測距法的計算原理 13 圖2.3 3 Superframe格式 14 圖3.1 1 DW`M1001-DEV 18 圖3.2 1 定位系統架構 20 圖 3.2 2 管理系統架構 20 圖3.3 1 系統運作流程 21 圖4.1 1 社區模擬圖 23 圖4.1 2實驗環境圖 24 圖4.2 1 DRTLS Manager R2的設定畫面 25 圖4.2 2 DRTLS Manager R2中Anchors和Tags的清單圖 26 圖4.2 3 Anchors和Tags在二維空間中的位置 27 圖4.2 4 Listener與樹莓派之間以UART介面連接 28 圖4.2 5 Minicom的連接畫面 29 圖4.2 6 List_of_Anchors函式內容 30 圖 4.2 7 Position_of_Listener函式內容 31 圖4.2 8 Doors函式內容 32 圖4.2 9 Position_of_Tags函式內容 33 圖4.2 10 Judge_Tags函式內容 34 圖4.2 11 LED的GPIO接口設置 35 圖4.2 12 LED函式內容 35 圖4.3 1 Firebase Cloud Firestore架設 36 圖4.3 2 前端網頁 38 圖 4.4 1 定位系統實驗測試 39 圖 4.4 2 UWB社區智能門禁管理操作介面 39 圖 4.4 3 A棟的權限 40 圖 4.4 4 B棟的權限 40 圖 4.4 5 門禁已開啟 41 圖 4.4 6 門禁仍鎖上 41 表目錄 表 2.3 1 DRTLS規格表 15 表3.1 1 DWM1001-DEV的詳細規格 19 |
參考文獻 |
[1] S. Li, L. D. Xu, and S. Zhao, "The internet of things: a survey," Information systems frontiers, vol. 17, pp. 243-259, 2015. [2] L. Da Xu, W. He, and S. Li, "Internet of things in industries: A survey," IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233-2243, 2014. [3] E. J. Oughton, W. Lehr, K. Katsaros, I. Selinis, D. Bubley, and J. Kusuma, "Revisiting wireless internet connectivity: 5G vs Wi-Fi 6," Telecommunications Policy, vol. 45, no. 5, p. 102127, 2021. [4] V. Coskun, B. Ozdenizci, and K. Ok, "A survey on near field communication (NFC) technology," Wireless personal communications, vol. 71, pp. 2259-2294, 2013. [5] 李兆祥, "以UWB網狀網路提升Wi-Fi室內定位精準度," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/6wu58f [6] 陳昱志, "以UWB為輔助之高精度定位儀及其應用," 碩士, 電信工程學研究所, 國立臺灣大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/hy5f2y [7] Z. Hao, Y. Yan, X. Dang, and C. Shao, "Endpoints-Clipping CSI Amplitude for SVM-Based Indoor Localization," Sensors, vol. 19, no. 17, p. 3689, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/17/3689. [8] A. Kalyanaraman, Y. Zeng, S. Rakshit, and V. Jain, "Caraokey: Car states sensing via the ultra-wideband keyless infrastructure," in 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2020: IEEE, pp. 1-9. [9] F. Zafari, A. Gkelias, and K. K. Leung, "A survey of indoor localization systems and technologies," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568-2599, 2019. [10] A. F. Molisch et al., "IEEE 802.15. 4a channel model-final report," IEEE P802, vol. 15, no. 04, p. 0662, 2004. [11] Qorvo. "Ultra-Wideband Technology." https://www.qorvo.com/innovation/ultra-wideband/technology (accessed June, 2023). [12] Decawave. "DWM1001 System Overview and Performance." https://www.qorvo.com/products/d/da007974 (accessed June, 2023). [13] A. R. J. Ruiz and F. S. Granja, "Comparing ubisense, bespoon, and decawave uwb location systems: Indoor performance analysis," IEEE Transactions on instrumentation and Measurement, vol. 66, no. 8, pp. 2106-2117, 2017. [14] Y. Cheng and T. Zhou, "UWB indoor positioning algorithm based on TDOA technology," in 2019 10th international conference on information technology in medicine and education (ITME), 2019: IEEE, pp. 777-782. [15] A. Poulose, O. S. Eyobu, M. Kim, and D. S. Han, "Localization error analysis of indoor positioning system based on UWB measurements," in 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), 2019: IEEE, pp. 84-88. [16] Y.-M. Lu, J.-P. Sheu, and Y.-C. Kuo, "Deep learning for ultra-wideband indoor positioning," in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021: IEEE, pp. 1260-1266. [17] Qorvo. "DWM1001-DEV." https://www.qorvo.com/products/p/DWM1001-DEV (accessed June, 2023). [18] V. Margapuri, N. Penumajji, and M. Neilsen, "PiBase: An IoT-based Security System Using Google Firebase and Raspberry Pi," in 2021 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), 2021: IEEE, pp. 79-85. [19] Scott Campbell. "BASICS OF UART COMMUNICATION." https://www.circuitbasics.com/basics-uart-communication/ (accessed June, 2023). [20] Google. "Cloud Firestore." https://firebase.google.com/docs/firestore (accessed June, 2023). [21] David Lord. "Flask." https://flask.palletsprojects.com/en/2.3.x/ (accessed June, 2023). [22] Mark Otto. "Get started with Bootstrap." https://getbootstrap.com/docs/5.3/getting-started/introduction/ (accessed June, 2023). |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信