| 系統識別號 | U0002-0407202323145300 |
|---|---|
| DOI | 10.6846/tku202300305 |
| 論文名稱(中文) | 筆記型電腦散熱鰭片幾何尺寸對熱效率影響之分析 |
| 論文名稱(英文) | The Analysis of the Impact of Geometric Dimensions of Heat Dissipating Fins on Thermal Efficiency in Laptop Computer |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 機械與機電工程學系碩士班 |
| 系所名稱(英文) | Department of Mechanical and Electro-Mechanical Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 111 |
| 學期 | 2 |
| 出版年 | 112 |
| 研究生(中文) | 林美玲 |
| 研究生(英文) | Kanyarat Vechprasit |
| 學號 | 610375031 |
| 學位類別 | 碩士 |
| 語言別 | 英文 |
| 第二語言別 | |
| 口試日期 | 2023-06-27 |
| 論文頁數 | 45頁 |
| 口試委員 |
指導教授
-
陳冠辰(gcchen@mail.tku.edu.tw )
口試委員 - 王銀添 口試委員 - 林鴻昇 |
| 關鍵字(中) |
散热器 散热鳍片 笔记本电脑 |
| 關鍵字(英) |
heatsink fins laptop |
| 第三語言關鍵字 | |
| 數位影音資料 | |
| 學科別分類 | |
| 中文摘要 |
本研究旨在研究筆記型電腦散熱鰭片的幾何尺寸變化對於高效能活動(如遊戲或影像製作)時的散熱效能有何影響。此研究是在仁寶公司 (Compal)熱部門實習期間進行,專注於戴爾公司(Dell)新款G系列遊戲筆記型電腦。 模擬和實際實驗所得結果顯示,修改後的筆記型電腦散熱鰭片在散熱性能方面有顯著改善。後部鰭片幾何尺寸的變化提升了散熱能力,從而在高效能活動(如遊戲或影像製作)期間降低了關鍵元件的溫度。 三維模型模擬表明,修改後的設計有效增加了散熱傳遞的表面積,並改善了鰭片的氣流通過情況。這種優化的散熱效果使得溫度降低,整體系統穩定性提高,減少了熱節點和潛在性能下降的風險。實際原型進一步驗證了模擬結果,顯示在高工作負載條件下筆記型電腦的溫度明顯降低。通過與原始熱模塊的比較,改進後的原型展示了更高的散熱性能。 |
| 英文摘要 |
This study aimed to determine how the laptop heat dissipation fins, which are most used for high-performance activities like gaming or producing video functions when their geometrical dimensions are varied. The research was conducted during an internship at the Thermal Department of Compal Electronic Company, particularly with the Dell new G series gaming laptop. The results obtained from the simulations and real experiments showed significant improvements in the thermal performance of the modified laptop heat dissipation fins. The variations in the geometrical dimensions of the rear side fins led to enhanced heat dissipation capabilities, thereby reducing the temperature of critical components during high-performance activities such as gaming or video production. The 3D model simulations demonstrated that the modified design effectively increased the surface area available for heat transfer and improved airflow through the fins. This optimized heat dissipation resulted in lower temperatures and improved overall system stability, reducing the risk of thermal throttling and potential performance degradation. The physical prototypes further validated. the simulation results, showcasing a notable reduction in the temperature of the laptop under high workload conditions. The improved prototype's increased cooling performance has been shown by comparing it against the original thermal module |
| 第三語言摘要 | |
| 論文目次 |
Table of Content Acknowledgement I Table of Content V Lists of Figures VII Lists of tables IX Chapter 1: Introduction - 1 - 1-1 Introduction to the internship institution - 1 - Compal Electronics product and market overview - 2 - 1-2 Internship overview - 3 - Internship Experience and Self-Expectation - 5 - Experiences and duties - 5 - 1.3 Purpose - 9 - 1.4 Scope - 9 - Chapter 2: Literature Review - 10 - 2.1 Basic information about cooling systems in notebook. - 11 - 2.2 Equations and principles - 15 - 2.2.1 Fourier’s Law and Thermal Resistance - 15 - 2.3 Related equations of thermal resistance for cooling laptop - 16 - 2.4 Electronic cooling simulation software - 18 - Chapter 3: Experiment design - 22 - 3.1 3D model & Simulation - 23 - 3.2 Experiment setup for prototypes. - 27 - Chapter 4: Result Analysis - 32 - 4.1 Heatsink simulation results. - 32 - 4.1.1 Heatsink experiment results. - 34 - 4.1.2 Comparison of heatsink in simulation and experiment. - 35 - 4.2 The entire system simulation. - 37 - 4.2.1 The entire system experiment. - 38 - 4.2.2 Comparison of the entire system in simulation and experiment. - 40 - Chapter 5: Conclusion - 43 - References - 44 - Lists of Figures Figure 1 symbol of compal electronics - 1 - Figure 2 Products of compal electronics - 1 - Figure 3 I-scan - 6 - Figure 4 IR camera - 6 - Figure 5 Thermal test - 7 - Figure 6 Wind tunnel (air flow measuring equipment) - 7 - Figure 7 CPU - 11 - Figure 8 Heat pipe - 11 - Figure 9 Heatsinks. - 12 - Figure 10 Fan - 12 - Figure 11 Thermal Pads and Thermal Paste - 13 - Figure 12 Air flow paths - 13 - Figure 13 Fan control app interface - 14 - Figure 14 Simcenter Flotherm software - 18 - Figure 15 Flotherm's interface - 18 - Figure 16 Heat analysis of flotherm - 19 - Figure 17 Materials and property libraries - 19 - Figure 18 The modeling of heat sources in Flotherm - 20 - Figure 19 Command center Flotherm - 20 - Figure 20 Flow chart of the plan - 22 - Figure 21 Dell New G16 gaming laptop - 23 - Figure 22 Thermal module - 24 - Figure 23 3D model of thermal module - 25 - Figure 24 Optimizing the length of the rear fins in the thermal module - 25 - Figure 25 Command center - 27 - Figure 26 prototypes - 27 - Figure 27 temperature sensors - 28 - Figure 28 Sensors connector - 29 - Figure 29 temperature sensors monitoring - 29 - Figure 30 CPU stress test - 30 - Figure 31 GPU stress test - 30 - Figure 32 The distribution of temperatures in simulation - 32 - Figure 33 Graph of temperature sensors in simulation - 33 - Figure 34 Graph of conducted heat - 33 - Figure 35 Graph of temperature sensors in experiment - 35 - Figure 36 Graph of temperature sensors in experiment - 37 - Figure 37 Graph of temperature sensors in the entire system simulation - 38 - Figure 38 Graph of temperature sensors in the entire system experiment - 40 - Figure 39 Comparison graph of CPU, GPU temperatures in the entire system - 41 - Lists of tables Table 1 fans setting - 25 - Table 2 Heat sources setting - 26 - Table 3 Boundary conditions in simulation program - 26 - Table 4 temperature results from simulation - 32 - Table 5 Temperatures data from experiment - 34 - Table 6 Comparison data of heatsink simulation and experiment - 35 - Table 7 Temperatures data from the entire system simulation - 37 - Table 8 Temperatures data from the entire system experiment Error! Bookmark not defined. Table 9 Comparison data of the entire system simulation and experiment - 40 - Table 10 % Error of the simulation and experiment - 41 - |
| 參考文獻 |
References [1] "Compal " https://www.compal.com/ (accessed 7 June, 2023). [2] "CUSTOM HEAT SINKS." https://thermocoolcorp.com/heat-sinks/ (accessed 7 June, 2023). [3] "Simcenter Flotherm." https://www.efd.com.tw/2020-01-386512337622577.html (accessed 7 June, 2023). [4] "Copper Water Heat Pipes." https://www.boydcorp.com/thermal/two-phase-cooling/heat-pipe-assemblies.html (accessed 7 June, 2023). [5] "Thermal pads." https://www.arctic.de/en/products/cooling/thermal-interface/thermal-pads/ (accessed 7 June, 2023). [6] "x17 R1, constant fan noises at idle." https://www.dell.com/community/Alienware/x17-R1-constant-fan-noises-at-idle/td-p/7949235 (accessed 7 June, 2023). [7] "CPU Cooling Fan for DELL Inspiron 1525 1526 1545 DC28A000j0l." https://www.made-in-china.com/showroom/chris2009gsy/product-detailqeIxGoMrnOUs/China-CPU-Cooling-Fan-for-DELL-Inspiron-1525-1526-1545-DC28A000j0l.html (accessed 7 June, 2023). [8] C. Harper. "Guide To Laptop Cooling Pads – Do They Really Work?" https://www.cgdirector.com/laptop-cooling-pads/ (accessed 7 June, 2023). [9] R. S. IDG. "Gaming laptop CPU showdown: Intel 11th-gen vs 10th-gen vs AMD Ryzen 5000." https://www.pcworld.com/article/394936/gaming-laptop-cpu-intel-11th-gen-vs-10th-gen-vs-amd-ryzen-5000.html (accessed 7 June, 2023). [10] "G16 Gaming Laptop." https://www.dell.com/zh-tw/shop/dell-%E7%AD%86%E8%A8%98%E5%9E%8B%E9%9B%BB%E8%85%A6%E8%88%87%E5%B0%8F%E7%AD%86%E9%9B%BB/g16-%E9%81%8A%E6%88%B2%E5%B0%88%E7%94%A8%E7%AD%86%E8%A8%98%E5%9E%8B%E9%9B%BB%E8%85%A6/spd/g-series-16-7630-laptop/g16-7630-d1888btw (accessed 7 June, 2023). [11] "2022 Annual Report." https://www.compal.com/mediafiles/sh-meeting/annual-report/Compal_2022_Annual_Report_EN_0602_final.pdf (accessed 6 June, 2023). [12] H.-I. C. Chyi-Tsong Chen "Multi-objective optimization design of plate-fin heat sinks using a direction-based genetic algorithm," Journal of the Taiwan Institute of Chemical Engineers, 2013. [13] S. C. Laxmidhar Biswal, and S. K. Som, "Design and Optimization of Single-Phase Liquid Cooled Microchannel Heat Sink," IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2009. [14] Y. J. Hyeokmin Kwon, Sung Jin Kim, "Analytic approach to thermal optimization of horizontally oriented radial plate-fin heat sinks in natural convection," Energy Conversion and Management, 2018. [15] [16] A. Moradikazerouni, "Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method," International Journal of Heat and Mass Transfer, 2019. [17] J. R. C. Waqar Ahmed Khan, Member, IEEE, and M. Michael Yovanovich, "Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method," IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES,, 2009. [18] M. Mochizuki, T. Nguyen, K. Mashiko, Y. Saito, T. Nguyen, and V. Wuttijumnong, "A Review of Heat Pipe Application Including New Opportunities," Frontiers in Heat Pipes, vol. 2, no. 1, 2011, doi: 10.5098/fhp.v2.1.3001. [19] W. Sanhan, K. Vafai, N. Kammuang-Lue, P. Terdtoon, and P. Sakulchangsatjatai, "Numerical simulation of flattened heat pipe with double heat sources for CPU and GPU cooling application in laptop computers," Journal of Computational Design and Engineering, vol. 8, no. 2, pp. 524-535, 2021, doi: 10.1093/jcde/qwaa091. [20] Y.-C. Weng, H.-P. Cho, C.-C. Chang, and S.-L. Chen, "Heat pipe with PCM for electronic cooling," Applied Energy, vol. 88, no. 5, pp. 1825-1833, 2011, doi: 10.1016/j.apenergy.2010.12.004. [21] "eat Sink Design Facts and Guidelines for ThermalAnalysis." [22] M. H. A. Elnaggar, M. Z. Abdullah, and S. R. R. Munusamy, "Experimental and Numerical Studies of Finned L-Shape Heat Pipe for Notebook-PC Cooling," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 6, pp. 978-988, 2013, doi: 10.1109/tcpmt.2013.2245944. [23] S. Maalej, A. Zayoud, I. Abdelaziz, I. Saad, and M. C. Zaghdoudi, "Thermal performance of finned heat pipe system for Central Processing Unit cooling," Energy Conversion and Management, vol. 218, 2020, doi: 10.1016/j.enconman.2020.112977. [24] D. P. H. Y. Zhang*, 0. K. Navas', M. K. Iyer'; P. K. Chan**, X. P. Liu", H. Hayashi"'; J. B. Han"",, "Development of thermal solutions for high performance laptop computers," Optical Communication Operation, Agilent Technologies, 2002. [25] Y. Deng and Y. Jiang, "High-performance, safe, and reliable soft-metal thermal pad for thermal management of electronics," Applied Thermal Engineering, vol. 199, 2021, doi: 10.1016/j.applthermaleng.2021.117555. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信