系統識別號 | U0002-0309202422483100 |
---|---|
DOI | 10.6846/tku202400746 |
論文名稱(中文) | 流動式電極電容去離子(FCDI)系統處理含鉻(VI)廢水 |
論文名稱(英文) | Flow-Electrode Capacitive Deionization (FCDI) System to Treat Chromium (VI)-Containing Wastewater |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 水資源及環境工程學系碩士班 |
系所名稱(英文) | Department of Water Resources and Environmental Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 高長鴻 |
研究生(英文) | Chang-Hung Kao |
學號 | 611480350 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-07-10 |
論文頁數 | 94頁 |
口試委員 |
口試委員
-
秦靜如(cjchinkk@gmail.com )
口試委員 - 林正嵐(cllin@mail.tku.edu.tw) 指導教授 - 彭晴玉(cypeng@mail.tku.edu.tw) |
關鍵字(中) |
流動電極電容去離子 四氧化三鐵 活性碳 脫鹽 六價鉻 |
關鍵字(英) |
Flow-electrode capacitive deionization Iron(II,III) oxide Activated Carbon Desalination Hexavalent Chromium |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
廢水之鉻污染經工業排放或不當處理,將嚴重影響人類健康與環境生態,鉻在自然水體中價態分為三價鉻 Cr(III)與六價鉻 Cr(VI),而六價鉻Cr(VI)毒性較三價鉻Cr(III)強,如何有效處理廢污水中的鉻值得關注。 本研究提出新穎的流動電極電容去離子系統(Flow-Electrode Capacitive Deionization, FCDI)應用於處理廢水之鉻污染。研究中測試四種流動式電極材料,發現最適合應用於 FCDI 系統去除鉻之流動式電極材料為 Fe3O4/AC (1:1)複合材料;Fe3O4/AC (1:1)複合材料是由 140-160 nm 圓形奈米 Fe3O4顆粒佈滿活性碳材料,Fe3O4/AC (1:1)保有立方尖晶石(spinel)結晶結構之(311)晶格面;BET 比表面積為173.48 m2 /g,中孔佔總孔體積的比例(Vmeso/Vtot)為99%,比電容值為15.07 F/g (當掃描速率為1 mV/s)。 研究中先以5 wt% AC為 FCDI 流動式電極材料,以 SCC 操作模式,測試FCDI系統的最佳參數,處理1000 mg/L K2Cr2O7 時,FCDI 系統擁有最優異的 Cr 平均鹽類去除效率(Average Salt Removal Rate, ASRR)為1.04×10-4 mmol/min/cm2,充電效率(34.32%)與能源消耗(1.61 kWh/mol)表現也很優良,表示 FCDI 系統可處理高濃度 K2Cr2O7 溶液,能擁有良好的去除水中鉻的效能;使用1.6 V 處理1000 mg/L K2Cr2O7 於pH 值為 4時, FCDI系統擁有最優異的 Cr 平均鹽類去除效率(ASRR: 1.21×10-4 mmol/min/cm2),與優良的充電效率(37.89%)與能源消耗(1.95 kWh/mol)。 以5 wt% Fe3O4/AC (1:1)複合材料為 FCDI 流動式電極材料,並以 SCC 操作模式與1.6 V 操作時,FCDI 系統擁有優異的 Cr 平均鹽類去除速率(ASRR)為 0.92×10-4 mmol/min/cm2,相較於活性碳流動式電極材料擁有較高的充電效率 (64.84%)與較低的能源消耗(1.02 kWh/mole),顯示本研究水熱合成之 Fe3O4/AC (1:1)複合材料為深具潛力的去除水中鉻之流動式電極材料。 以回收再用5 wt% Fe3O4/AC (1:1)複合材料為 FCDI 流動式電極材料,也可以看到效果跟原本的複合材料相比,Cr 平均鹽類去除速率(ASRR)從0.92×10-4 mmol/min/cm2可略增為1.04×10-4 mmol/min/cm2;但充電效率則有顯著下降,由64.84%降低至38.24%,能耗也從1.02 增加至1.89 kWh/mole,代表Fe3O4/AC (1:1)複合材料可被清洗再次回收使用,但仍需更多次使用或更長期的回收再用之後續研究。 當溶液中存在相同莫耳濃度(6.8 mM)之陰離子與鉻酸根離子時,SO42– 的存在相較於 Cl- 或 NO3- 造成更顯著的競爭效應,當SO42– 共存於溶液時,Cr 之 2 hr ASRR 顯著下降27%,由原本的 0.92×10-4 mmol/min/cm2,降為0.68×10-4 mmol/min/cm2。 |
英文摘要 |
Chromium pollution in wastewater, resulting from industrial discharges or improper treatment, severely affects human health and environmental ecology. In natural water bodies, chromium exists in two valence states: trivalent chromium Cr(III) and hexavalent chromium Cr(VI). Hexavalent chromium Cr(VI) is more toxic than trivalent chromium Cr(III). Effective treatment of chromium in wastewater is thus a critical concern. This study proposed an innovative Flow-Electrode Capacitive Deionization (FCDI) system for treating chromium-containing wastewater. Four types of flow-electrode materials were tested and the Fe3O4/AC (1:1) composite material was found to be the most suitable for removing chromium in the FCDI system. The Fe3O4/AC (1:1) composite consisted of 140-160 nm spherical nano Fe3O4 particles distributed on activated carbon, maintaining a spinel crystal structure with a (311) lattice plane. It had a BET surface area of 173.48 m²/g, with 99% mesopores of the total pore volume, and a specific capacitance of 15.07 F/g (at a scan rate of 1 mV/s). 5 wt% AC was firstly employed as the FCDI flow-electrode material, operating in SCC mode, to determine the optimal parameters for chromium removal. When treating 1000 mg/L K2Cr2O7, the FCDI system achieved an average salt removal rate (ASRR) of 1.04×10-4 mmol/min/cm², with a charging efficiency of 34.32% and an energy consumption of 1.61 kWh/mol, indicating its effectiveness in handling high concentrations of K2Cr2O7. Using 1.6 V to treat 1000 mg/L K2Cr2O7 at pH 4, the system showed the best performance with an ASRR of 1.21×10-4 mmol/min/cm², a charging efficiency of 37.89%, and an energy consumption of 1.95 kWh/mol. With 5 wt% Fe3O4/AC (1:1) composite material as the FCDI flow-electrode material, operating in SCC mode and at 1.6 V, the FCDI system achieved an ASRR of 0.92×10-4 mmol/min/cm², a high charging efficiency of 64.84%, and a low energy consumption of 1.02 kWh/mol, highlighting the potential of hydrothermally synthesized Fe3O4/AC (1:1) composite material for chromium removal from wastewater. Reusing 5 wt% Fe3O4/AC (1:1) composite material for FCDI also demonstrated effective chromium removal, with a slightly increased ASRR from 0.92×10-4 to 1.04×10-4 mmol/min/cm². However, the charging efficiency significantly decreased from 64.84% to 38.24%, and energy consumption increased from 1.02 to 1.89 kWh/mol, indicating that Fe3O4/AC (1:1) composite material can be cleaned and reused, but further research is needed to assess its long-term reuse feasibility. In the presence of anions at the same molar concentration (6.8 mM) with chromate ions, SO4²⁻ had a more pronounced negative impact on the removal of negatively charged chromate ions compared to Cl⁻ or NO3⁻. When SO4²⁻ coexisted in the chromate solution, ASRR significantly dropped 27% from 0.92 × 10-4 mmol/min/cm2 to 0.68 × 10-4 mmol/min/cm2. |
第三語言摘要 | |
論文目次 |
目錄 中文摘要 ii 英文摘要 iv 目錄 vi List of Figure viii List of Table xii 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 脫鹽技術發展 3 2.2 電容去離子技術 3 2.2.1 電容去離子發展歷史 4 2.2.2 電容去離子(CDI)電極材料特性 4 2.3 流動式電極電容去離子技術 5 2.3.1. FCDI運行模式 8 2.3.2. FCDI電極材料 9 2.3.3. 影響FCDI脫鹽性能的因素 9 2.3.4. 奈米四氧化三鐵/活性碳複合材料 10 2.3.5. 進流水初始pH值對FCDI性能的影響 10 第三章 實驗方法 12 3.1 實驗架構 12 3.2 實驗設備 13 3.2.1 實驗藥品 13 3.2.2 實驗設備 14 3.3 電極材料製備 15 3.3.1 活性碳(Activate carbon, AC) 15 3.3.2 合成奈米四氧化三鐵/活性碳複合材料 15 3.4 儀器分析方法 17 3.4.1 感應耦合電漿發射光譜儀(ICP-OES, Agilent) 17 3.4.2 X射線繞射分析 17 3.4.3 掃描式電子顯微鏡分析(SEM) 17 3.4.4 循環伏安法(Cyclic Voltammetry, CV) 17 3.4.5 BET 孔徑與表面積分析 18 3.4.6 離子層析儀(IC) 18 3.5 計算公式 19 第四章 結果與討論 21 4.1 流動式電極材料物化與電化學特性分析 21 4.1.1 流動式電極材料物理化學特性分析 21 4.1.2 流動式電極材料電化學特性分析 30 4.2 活性碳流動式電極電容去離子系統去除鉻 36 4.2.1 重鉻酸鉀濃度最佳化 36 4.2.2 操作電壓最佳化 48 4.2.3 以不同 pH 值溶液建構流動式電極電容去離子系統 58 4.3 奈米四氧化三鐵/活性碳(Fe3O4/AC)複合材料應用於FCDI系統 68 4.3.1 奈米四氧化三鐵/活性碳(Fe3O4/AC)複合材料應用於FCDI系統 68 4.3.2 Fe3O4/AC 複合材料回收再用可行性評估 79 4.3.3 陰離子競爭效應 84 第五章 結論與建議 89 Reference 91 List of Figure Figure 2.3.1 (a) Structure and components of the FCDI cell;(b) Schematic diagram of the FCDI cell in the short-circuited closed-cycle mode (Zhang, Tang et al. 2020) 6 Figure 2.3.2 FCDI Cell schematic diagram (Changyong Zhang,2021) 7 Figure 2.3.1.1 Schematic of different operation modes of FCDI: (a) isolated closed-cycle (ICC) mode, (b) short-circuited closed cycle (SCC) mode, (c) single cycle (Fan Yang Y. H., 2021) 8 Figure 2.3.4.1 (a) Effect of solution pH on the distribution of Cr(VI) species, and (b) effect of initial pH of feed water on the removal efficiency of Cr(VI) for feed concentration of Cr(VI) 3 mg/L, feed concentration of coexisting KCl 500 mg/L, applied current density 10.2 A/m2, HRT 3.6 min, ctivated carbon content 5 wt%, running time 30 min. 11 Figure 3.1.1 Schematic diagram of the experimental structure of this study 12 Figure 3.3.2.1 Synthesis method of nanoferric oxide/activated carbon composite materials 16 Figure 4.1.1.1 XRD lattice structure analysis of flow electrode materials (Fe3O4/AC 2:1, Fe3O4/AC 1:1, Fe3O4/AC 1:2, AC) 24 Figure 4.1.1.2 SEM Surface Morphology of Activated Carbon (AC) 25 Figure 4.1.1.3 SEM Surface Morphology of Hydrothermally Synthesized Nano Fe3O4/AC (1:2) Composite Material (a) 1 KX, (b) 10 KX, (c) 30 KX, (d) EDX, 26 Figure 4.1.1.4 SEM Surface Morphology of Hydrothermally Synthesized Nano Fe3O4/AC (1:1) Composite Material (a) 1 KX, (b) 10 KX, (c) 30 KX, (d) EDX, 27 Figure 4.1.1.5 SEM Surface Morphology of Hydrothermally Synthesized Nano Fe3O4/AC (2:1) Composite Material (a) 1 KX, (b) 10 KX, (c) 30 KX, (d) EDX, 28 Figure 4.1.2.1 Cyclic voltammograms of four flow electrode materials (AC, Fe3O4/AC 1:2, Fe3O4/AC 1:1, Fe3O4/AC 2:1) at the scan rate of 1 mV/s. 32 Figure 4.1.2.2 Cyclic voltammograms of (a) AC, (b) Fe3O4/AC (1:1), (c) Fe3O4/AC (1:2), and (d) Fe3O4/AC (2:1) in 1 M NaCl with various scan rates 33 Figure 4.1.2.3 Electrochemical impedance spectrum (EIS) of flow-electrode materials (a) AC, (b) Fe3O4/AC (1:2), (c) Fe3O4/AC (1:1), and (d) Fe3O4/AC (2:1) 34 Figure.4.2.1.1 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system (1.2 V) treating 50 mg/L K2Cr2O7 38 Figure.4.2.1.2 Concentration changes of (a) chromium and (b) potassium in the FCDI system (1.2 V) treating 50 mg/L K2Cr2O7 39 Figure.4.2.1.3 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system (1.2 V) treating 100 mg/L K2Cr2O7 40 Figure.4.2.1.4 Concentration changes of (a) chromium and (b) potassium in the FCDI system (1.2 V) treating 100 mg/L K2Cr2O7 41 Figure.4.2.1.5 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system (1.2 V) treating 500 mg/L K2Cr2O7 42 Figure.4.2.1.6 Concentration changes of (a) chromium and (b) potassium in the FCDI system (1.2 V) treating 500 mg/L K2Cr2O7 43 Figure.4.2.1.7 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system (1.2 V) treating 1000 mg/L K2Cr2O7 44 Figure 4.2.1.8 Concentration changes of chromium in the FCDI system (1.2 V) treating 1000 mg/L K2Cr2O7 45 Figure 4.2.1.9 ASRR, charge efficiency, and energy consumption of the FCDI system treating different concentrations of K2Cr2O7 46 Figure 4.2.1.10 Ragone plot of FCDI system treating different concentrations of K2Cr2O7 in SCC mode 47 Figure 4.2.2.1 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system (1.2 V) treating 1000 mg/L K2Cr2O7 50 Figure 4.2.2.2 Concentration changes of chromium in the FCDI system (1.2 V) treating 1000 mg/L K2Cr2O7 51 Figure 4.2.2.3 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system (1.6 V) treating 1000 mg/L K2Cr2O7 52 Figure 4.2.2.4 Concentration changes of (a) chromium and (b) potassium in the FCDI system (1.6 V) treating 1000 mg/L K2Cr2O7 53 Figure 4.2.2.5 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system (2.0 V) treating 1000 mg/L K2Cr2O7 54 Figure 4.2.2.6 Concentration changes of (a) chromium and (b) potassium in the FCDI system (2.0 V) treating 1000 mg/L K2Cr2O7 55 Figure 4.2.2.7 ASRR, charge efficiency, and energy consumption of the FCDI system Run different voltages 56 Figure 4.2.2.8 Ragone plot of FCDI system with different voltages in SCC mode 57 Figure 4.2.3.1 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system with 1.6 V in 1000 mg/L K2Cr2O7 at pH 4 60 Figure 4.2.3.2 Concentration changes of (a) chromium and (b) potassium in the FCDI system with 1.6 V in 1000 mg/L K2Cr2O7 at pH 4 61 Figure 4.2.3.3 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system with 1.6 V in 1000 mg/L K2Cr2O7 at pH 6 62 Figure 4.2.3.4 Concentration changes of (a) chromium and (b) potassium in the FCDI system with 1.6 V in 1000 mg/L K2Cr2O7 at pH 6 63 Figure 4.2.3.5 Changes of (a) conductivity, (b) pH, and (c) current in the FCDI system with 1.6 V in 1000 mg/L K2Cr2O7 at pH 8 64 Figure 4.2.3.6 Concentration changes of (a) chromium and (b) potassium in the FCDI system with 1.6 V in 1000 mg/L K2Cr2O7 at pH 8 65 Figure 4.2.3.7 ASRR, charge efficiency, and energy consumption of the FCDI system with 1000 mg/L K2Cr2O7 at pH 4, pH 6, pH 8 66 Figure 4.2.3.8 Ragone plot of FCDI system operating in SCC mode with different pH values of chromium solution. 67 Figure 4.3.1.1 Changes in (a) conductivity, (b) pH, and (c) current in the Fe3O4/AC (1:2) FCDI system (1.6 V) (1000 mg/L K2Cr2O7) 70 Figure 4.3.1.2 Concentration changes of (a) chromium and (b) potassium (c) iron in the Fe3O4/AC (1:2) FCDI system (1.6 V) (1000 mg/L K2Cr2O7) 71 Figure 4.3.1.3 Changes in (a) conductivity, (b) pH, and (c) current in the Fe3O4/AC (1:1) FCDI system (1.6 V) (1000 mg/L K2Cr2O7) 72 Figure 4.3.1.4 Concentration changes of (a) chromium and (b) potassium (c) iron in the Fe3O4/AC (1:1) FCDI system (1.6 V) (1000 mg/L K2Cr2O7) 73 Figure 4.3.1.5 Changes in (a) conductivity, (b) pH, and (c) current in the Fe3O4/AC (2:1) FCDI system (1.6 V) (1000 mg/L K2Cr2O7) 74 Figure 4.3.1.6 Concentration changes of (a) chromium and (b) potassium (c) iron in the Fe3O4/AC (2:1) FCDI system (1.6 V) (1000 mg/L K2Cr2O7) 75 Figure 4.3.1.7 Testing iron element release using Fe3O4/AC 1:1 as electrode material. 76 Figure 4.3.1.8 ASRR, charging efficiency and energy consumption of FCDI systems with three Fe3O4/AC composite materials 77 Figure 4.3.1.8 Ragone plot of four electrode materials in FCDI system in SCC mode 78 Figure 4.3.2.1 ASRR, charging efficiency and energy consumption of FCDI system running with Fe3O4/AC (1:2) and recycled Fe3O4/AC (1:2) materials 80 Figure 4.3.2.2 ASRR, charging efficiency and energy consumption of FCDI system running with Fe3O4/AC (1:1) and recycled Fe3O4/AC (1:1) materials 81 Figure 4.3.2.3 ASRR, charging efficiency and energy consumption of FCDI system running with Fe3O4/AC (2:1) and recycled Fe3O4/AC (2:1) materials 82 Figure 4.3.3.1 The competitive effect of anions (a) Cl-, (b) NO3- and (c) SO42- on the removal of chromium in FCDI system 86 Figure 4.3.3.2 Effects of various coexisting anions under different feed concentrations on the removal efficiency of Cr(VI) (Dong, 2021). 88 List of Table Table 3.2.1.1 Brands and models of chemicals used in the study 13 Table 3.2.2.1 Manufacturers and model of equipment 14 Table 4.1.1.1 Pore characteristics of four flow electrode materials 29 Table 4.1.2.1 Specific capacitance (F/g) of four flow-electrode materials (AC, Fe3O4/AC 1:2, Fe3O4/AC 1:1, Fe3O4/AC 2:1) at different scan rates 33 Table 4.1.2.2 Impedance analyses of AC, Fe3O4/AC (1:2), Fe3O4/AC (1:1), Fe3O4/AC (2:1) in 1M NaCl based on equivalent circuit model 35 Table 4.2.1.1 A comprehensive comparison of the average salt removal rate (ASRR), charge efficiency, and energy consumption of the FCDI system (1.2 V) treating 50, 100, 500, and 1000 mg/L K2Cr2O7 46 Table 4.2.2.1 A comprehensive comparison of the average salt removal rate (ASRR), charge efficiency, and energy consumption of the FCDI system (1000 mg/L K2Cr2O7) running 1.2 V, 1.6 V, and 2.0 V 56 Table 4.2.3.1 A comprehensive comparison of the average salt removal rate (ASRR), charge efficiency, and energy consumption of the FCDI system (1000 mg/L K2Cr2O7) (1.6 V) at pH 4, pH 6, pH 8 66 Table 4.3.1.1 A comprehensive comparison of the average salt removal rate (ASRR), charge efficiency, and energy consumption of the FCDI system (1000 mg/L K2Cr2O7) (1.6 V) with four electrode materials 77 Table 4.3.2.1 FCDI performance of recycled Fe3O4/AC (1:2) composite materials 80 Table 4.3.2.2 FCDI performance of recycled Fe3O4/AC (1:1) composite materials 81 Table 4.3.2.3 FCDI performance of recycled Fe3O4/AC (2:1) composite materials 82 Table 4.3.2.4 A comprehensive comparison of the average salt removal rate (ASRR), charge efficiency, and energy consumption of the FCDI system (1000 mg/L K2Cr2O7) (1.6 V) with three recycled electrode materials 83 Table 4.3.3.1 Competitive effect of anions (Cl-, NO3- and SO42-) on the removal of chromium in the FCDI system 87 |
參考文獻 |
Reference Aghigh, A., V. Alizadeh, H. Y. Wong, M. S. Islam, N. Amin and M. Zaman (2015). "Recent advances in utilization of graphene for filtration and desalination of water: A review." Desalination 365: 389-397. Ali, I. and V. Gupta (2006). "Advances in water treatment by adsorption technology." Nature Protocols 1(6): 2661-2667. Anderson, M. A., A. L. Cudero and J. Palma (2010). "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?" Electrochimica Acta 55(12): 3845-3856. Barrera-Díaz, C. E., Lugo-Lugoa, V. and B. Bilyeu (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223–224: 1-12. Biesheuvel, P. M., R. Zhao, S. Porada and A. van der Wal (2011). "Theory of membrane capacitive deionization including the effect of the electrode pore space." Journal of colloid and interface science 360(1): 239-248. Changyong ZhangMa,Lei Wu,Jing Sun,LI Wang,Tianyu Li,andT.David WaiteJinxing. (2021). Flow Electrode Capacitive Deionization (FCDI): Recent. environmental science and technology, 45. Dai, K., L. Shi, J. Fang, D. Zhang and B. Yu (2005). "NaCl adsorption in multi-walled carbon nanotubes." Materials Letters 59(16): 1989-1992. Dahiya, S. and B. K. Mishra (2020). Enhancing understandability and performance of flow electrode capacitive deionization by optimizing configurational and operational parameters: A review on recent progress. Separation and Purification Technology, 240: 116660. Dong, Y., W., Xing, K., Luo, J., Zhang, J., Yu, W., Jin, J., Wang, & W. Tang, (2021). Effective and continuous removal of Cr(VI) from brackish wastewater by flow-electrode capacitive deionization (FCDI). Journal of Cleaner Production, 326: 129417-129425. Doornbusch, G. J., Dykstra, J. E., Biesheuvel, P. M., & Suss, M. E. (2016). Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. Journal of Materials Chemistry A, 4(10), 3642-3647. Dykstra, J. E. (2018). Desalination with porous electrodes: Mechanisms of ion transport and adsorption. Ph. D. , Wageningen University. Fan YangHe,Leon Rosentsvit,Matthew E. Suss,Xiaori Zhang,Tie Gao,Peng LiangYunfei. (2021). Flow-electrode capacitive deionization: A review and new perspectives. ELSEVIER, 2-3. Farmer, J. C., D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco (1996). "Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes." Journal of the Electrochemical Society 143(1): 159-169. Gaikwad, M. S. and Chandrajit Balomajumder (2012). Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study. Separation and Purification Technology, 186: 272-281. He, C., J. Ma, C. Zhang, J. Song and T. D. Waite (2018). Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening. Environmental Science & Technology, 52(16): 9350-9360. Hsisheng TengYeh and Li-Yeh HsuTien-Sheng. (1998). PREPARATION OF ACTIVATED CARBON FROM BITUMINOUS COAL WITH PHOSPHORIC ACID ACTIVATION. pergamon, 1389-1394. Huang, W., Y. M. Zhang, S. X. Bao and S. X. Song (2013). "Desalination by Capacitive Deionization with Carbon-Based Materials as Electrode: a Review." Surface Review & Letters 20(6): 1330003-1330010. Jeon, S.-i., H.-r. Park, J.-g. Yeo, S. Yang, C. H. Cho, M. H. Han and D. K. Kim (2013). "Desalination via a new membrane capacitive deionization process utilizing flow-electrodes." Energy & Environmental Science 6(5): 1471-1475. Jeon, S. -I., Park, H. -R., Yeo, J. -G., Yang, S., Cho, C. H., Han, M. H. and D. K. Kim (2013). Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 6(5): 1471-1475. Jia, B. and L. Zou (2012). "Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization." Chemical Physics Letters 548: 23-28. Johnson, A. M. and J. Newman (1971). "Desalting by Means of Porous Carbon Electrodes." 90 Journal of the Electrochemical Society 118(3): 510-517. Johnson, A. M., A. W. Venolia, R. G. Wilbourne, J. Newman, C. M. Wong and G. S. Gilliam (1970). "The electrosorb process for desalting water." Washington: U.S. Dept. of the Interior. Kim, Y. J. and J. H. Choi (2010). "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane." Separation and Purification Technology 71: 70-75 Liang. (2017). Optimized desalination performance of high voltage flow-electrode. ELSEVIER, 68. Meng-Jiao WangA. Gray, Steve A. Reznek, Khaled Mahmud, Yakov KutsovskyCharles. (2003). Carbon Black. Kirk-Othmer Encyclopedia of Chemical Technology. Oren, Y. (2008). "Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)." Desalination 228(1–3): 10-29. Peng, Z., D. Zhang, L. Shi and T. Yan (2012). "High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization," Journal of Materials Chemistry. 22: 6603-6612. Rommerskirchen, A., Linnartz, C. J., Müller, D., Willenberg, L. K. and M. Wessling (2018). Energy Recovery and Process Design in Continuous Flow–Electrode 53 Capacitive Deionization Processes. ACS Sustainable Chemistry & Engineering, 6(10): 13007-13015. S. PoradaZhao,A. van der Wal , V. Presser,P.M. BiesheuvelR. (2013). Review on the science and technology of water. ELSEVIER, 3-4. Shiu, H. Y., Lee, M., Chao, Y., Chang, K. C., Hou, C. H., & Chiueh, P. T. (2019). Hotspot analysis and improvement schemes for capacitive deionization (CDI) using life cycle assessment. Desalination, 468, 114087. Suss, M. E., T. F. Baumann, W. L. Bourcier, C. M. Spadaccini, K. A. Rose, J. G. Santiago and M. Stadermann (2012). "Capacitive desalination with flow-through electrodes." Energy & Environmental Science 5: 9511-9519. Wang, X. Z., M. G. Li, R. M. Chen, S. M. Huang and L. K. Pan (2006). "Electrosorptionof NaCl solutions with carbon nanotubes and nanofibers composite film electrodes." Electrochemical and Solid-State Letter 9: E23-E26. Xing, W., Liang, J., Tang, W., He, D., Yan, M., Wang, X., Luo, Y., Tang, N. & Huang, M. (2020). Versatile applications of capacitive deionization (CDI)-based technologies. Desalination, 482, 114390. Xing, W., J. Liang, W. Tang, D. He, M. Yan, X. Wang, Y. Luo, N. Tang and M. Huang (2020). "Versatile applications of capacitive deionization (CDI)-based technologies." Desalination 482: 114390. Yang, S., Jeon, S. -I., Kim, H., Choi, J., Yeo, J. -G., Park, H.-R. and D. K. Kim (2016). Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology. ACS Sustainable Chemistry & Engineering, 4(8): 4174-4180. Yang, S., Kim, H., Jeon, S. I., Choi, J., Yeo, J. G., Park, H. R., Jin, J. & Kim, D. K. (2017). Analysis of the desalting performance of flow-electrode capacitive deionization under short-circuited closed cycle operation. Desalination, 424, 110-121. Zhan, Y., Meng, F., Lei, Y., Zhao, R., Zhong, J., & Liu, X. (2011). One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties. Materials Letters, 65, 1737-1740. Zhang, X., F. Yang, J. Ma and P. Liang (2019). "Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization." Environmental Science: Water Research & Technology 6(2):341-350. Zhang, X., Yang, F., Ma, J., & Liang, P. (2020). Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization. Environmental Science: Water Research & Technology, 6(2), 341-350. Zhao, X., Jia, B., Sun, Q., Jiao, G., Liu, L. and D. She (2018). Removal of Cr6+ ions from water by electrosorption on modified activated carbon fiber felt. Royal Society Open Science, 5:180472. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信