系統識別號 | U0002-0309202421471500 |
---|---|
DOI | 10.6846/tku202400745 |
論文名稱(中文) | 虱目魚鱗或稻殼製備生物質衍生活性碳應用於電容去離子(CDI)技術 |
論文名稱(英文) | Application of Biomass-Derived Activated Carbons from Milkfish Scales or Rice Husks in Capacitive Deionization (CDI) System |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 水資源及環境工程學系碩士班 |
系所名稱(英文) | Department of Water Resources and Environmental Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 張捷宇 |
研究生(英文) | CHIEH-YU CHANG |
學號 | 612480094 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-07-10 |
論文頁數 | 112頁 |
口試委員 |
口試委員
-
秦靜如(cjchin@cc.ncu.edu.tw)
口試委員 - 林正嵐(cllin@mail.tku.edu.tw) 指導教授 - 彭晴玉(cypeng@mail.tku.edu.tw) |
關鍵字(中) |
生物質衍生活性碳 虱目魚鱗 稻殼 電容去離子 |
關鍵字(英) |
biomass-derived activated carbon milkfish scales rice husk capacitive deionization |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
電容去離子(Capacitive Deionization, CDI)技術為一種低能耗、低成本及對環境無二次污染的離子分離技術。農漁業廢棄物轉化為生物質衍生活性碳的研究及應用具有發展前景,為探討動物基與植物基的材料於製成生物質衍生活性碳之差異性,本研究使用虱目魚鱗或稻殼作為材料,虱目魚鱗以700°C、800°C、900°C 三種活化溫度製備生質活性碳,稻殼則以800°C與1:1、1:2的活化劑(NaOH)比例製備生質活性碳,比較各生質活性碳之物理結構和電化學特性上的差異,並運用於電容去離子(CDI)系統中,並與市售活性碳比較對離子去除效能的表現。 魚鱗活性碳(FSAC)的比表面積與孔體積會隨著活化溫度上升而增加,稻殼活性碳(RHAC)則隨著活化劑比例的提高而增加,FSAC900與RHAC800 1:2的比表面積可達1945.79 m2/g與933.44 m2/g,孔體積可達1.68 cm3/g與0.65 cm3/g。以CV與EIS分析材料的電化學特性,發現FSAC900與RHAC800 1:2在掃描速率為1 mV/s 時,表現出73.75 F/g與66.25 F/g的高比電容值,電荷轉移電阻分別為1.37 Ω與3.55 Ω,擴散電阻則為7.25×10-6 Ω與2.25 Ω。 將FSAC、RHAC與市售活性碳應用於CDI系統中,發現兩種生質活性碳對於Na+的吸附能力皆優於Cl-,且FSAC與RHAC對Na+的平均電吸附量皆高於GAC;但在Cl-的吸附能力上,FSAC與RHAC的平均電吸附量皆略低於GAC。本研究顯示生物質衍生活性碳應用於CDI系統之發展潛力。 |
英文摘要 |
Capacitive Deionization (CDI) technology, as a novel ion separation method, is characterized by low energy consumption, low cost, and no secondary environmental pollution. Researches and applications of converting agricultural and fishery wastes into biomass-derived activated carbons have shown promising prospects. To explore the differences between animal-based and plant-based materials in synthesizing biomass-derived activated carbons, this study employed milkfish scales and rice husks as raw materials. The milkfish scales were processed with activation temperatures of 700°C, 800°C, or 900°C, while the rice husks were activated at 800°C with two ratios of activation agents (NaOH). This study compared the physical structures and electrochemical properties of the synthesized biomass-derived activated carbons with commercial activated carbon and applied them in the CDI system to compare the ion removal efficiency. The specific surface area and pore volume of fish scale activated carbon (FSAC) increase with higher activation temperatures, while those of rice husk activated carbon (RHAC) increase with higher ratios of activation agents. The specific surface areas of FSAC900 and RHAC800 1:2 can reach 1945.79 m²/g and 933.44 m²/g, respectively, with pore volumes of 1.68 cm³/g and 0.65 cm³/g. Electrochemical properties of FSAC and RHAC were analyzed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FSAC900 and RHAC800 1:2 exhibited high specific capacitance values of 73.75 F/g and 66.25 F/g at 1 mV/s, respectively. Their charge transfer resistances were 1.37 Ω and 3.55 Ω, and their diffusion resistances were 7.25×10⁻⁶ Ω and 2.25 Ω, respectively. When applying FSAC, RHAC, or commercial activated carbon in the CDI system, it was found that both types of biomass-derived activated carbons exhibited better electrosorption capacity for Na+ than that for Cl-. FSAC and RHAC produced at different activation temperatures or with different ratios of activation agents showed a higher average electrosorption capacity for Na+ compared to GAC. However, for Cl- electrosorption, the average electrosorption capacity of both FSAC and RHAC was slightly lower than that of GAC. This study demonstrated the biomass-derived activated carbons applied in CDI system has great development potential. |
第三語言摘要 | |
論文目次 |
目錄 中文摘要 i 英文摘要 ii 目錄 iv List of Figure vii List of Table xi 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 海水淡化技術 3 2.1.1 薄膜法 4 2.1.2 蒸餾法 8 2.1.3 電容去離子技術(Capacitive Deionization, CDI) 11 2.2 電容去離子技術 12 2.2.1 電容去離子技術原理 12 2.2.2 電雙層電容 14 2.2.3 電極材料之選擇 16 2.3 活性碳 18 2.3.1 生物質衍生活性碳 19 2.3.2 魚鱗衍生活性碳 20 2.3.3 稻殼衍生活性碳 21 第三章 研究方法及材料 22 3.1 實驗架構 22 3.2 實驗藥品與設備 24 3.2.1 實驗藥品 24 3.2.2 實驗設備 25 3.3 電極材料製備 26 3.3.1 魚鱗活性碳(Fish Scale Activated Carbons, FSAC) 26 3.3.2 稻殼活性碳(Rice Husk Activated Carbons, RHAC) 26 3.4 電極製備 27 3.4.1 循環伏安法電極製備 27 3.4.2 CDI電極製備 27 3.5 實驗分析方法 28 3.5.1 X射線繞射分析(X-ray Diffraction, XRD) 28 3.5.2 熱重分析(Thermogravimetric analysis, TGA) 28 3.5.3 比表面積與孔徑分析(Surface Area and Pore size distribution Analyzer) 29 3.5.4 掃描式電子顯微鏡分析(Scanning Electron Microscope, SEM) 29 3.5.5 表面官能基分析(Fourier-transform infrared spectroscopy, FTIR) 29 3.5.6 接觸角分析(Contact Angle, CA) 30 3.5.7 循環伏安法分析(Cyclic Voltammetry, CV) 30 3.5.8 電化學阻抗分析 (Electrochemical impedance spectroscopy, EIS) 31 3.6.1 電容去離子實驗(Capacitive Deionization Experiment, CDI) 32 3.6.2 感應耦合電漿光譜儀(Inductively coupled plasma atomic emission spectroscopy, ICP-OES) 33 3.6.3 離子層析儀(Ion chromatograph, IC) 34 第四章 結果與討論 36 4.1 魚鱗活性碳(Fish Scale Activated Carbon, FSAC) 36 4.1.1 虱目魚魚鱗熱重分析 36 4.1.2 魚鱗活性碳表面特性分析 38 4.1.3 魚鱗活性碳電化學特性分析 50 4.1.4 魚鱗活性碳應用於電容去離子技術 56 4.2 稻殼活性碳(Rice Husk Activated Carbon, RHAC) 66 4.2.1 稻殼熱重分析 66 4.2.2 稻殼活性碳表面特性分析 68 4.2.3 稻殼活性碳電化學特性分析 80 4.2.4 稻殼活性碳應用於電容去離子技術 86 4.3 虱目魚鱗與稻殼生質活性碳比較 94 4.3.1 物理結構特性 94 4.3.2 電化學特性分析 97 4.3.3 電容去離子系統 100 第五章 結論與建議 104 Reference 106 List of Figure Figure 2.1.1.1 Diagram of reverse osmosis (RO) principle (Miller, 2003). 5 Figure 2.1.1.2 Schematic diagram of electrodialysis (ED) desalination process (Miller, 2003). 6 7 Figure 2.1.1.3 Schematic diagram of forward osmosis (FO) process 7 (Islam et al., 2018). 7 Figure 2.1.2.1 Schematic diagram of multi-effect distillation (MED) process 9 (Curto et al., 2021). 9 Figure 2.1.2.2 Schematic diagram of multi-stage flash (MSF) process 10 (Curto et al., 2021). 10 Figure 2.2.1.1 Schematic diagram of the electrosorption/desorption process in CDI (Sayed et al., 2023). 13 Figure 2.2.2.1 Schematic of the Electric Double Layer (EDL) (Kopeliovich, 2023). 15 Figure 2.2.3.1 (a) Pore nomenclature according to IUPAC, (b) nomenclature in porous media transport theory (Porada et al., 2013). 17 Figure 3.1.1 Schematic research structure for FSAC or RHAC applied in CDI system. 23 Figure 3.6.1.1 Schematic diagram of CDI system. 35 Figure 4.1.1.1 Thermogravimetric analysis (TGA) of fish scale powder. 37 Figure 4.1.2.1 XRD patterns of original fish scale and fish scale activated carbons. 40 Figure 4.1.2.2 SEM images of the original fish scale powder (a) x 1 K X, (b) blocky structure x 3 K X, (c) strip structure x 4 K X, (d) fold structure x 10 K X. 41 Figure 4.1.2.3 SEM images of the FSACs. (a) FSAC900 x 5 K X, (b) FSAC800 x 5 K X, (c) FSAC700 x 5 K X, (d) FSAC900 x 30 K X, (e) FSAC800 x 30 K X, (f) FSAC700 x 30 K X. 42 Figure 4.1.2.4 Nitrogen adsorption (●) - desorption (▲) isotherms of the fish scale activated carbons and GAC (a) FSAC900, (b) FSAC800, (c) FSAC700, and (d) GAC. 43 Figure 4.1.2.5 Pore size distribution of the fish scale activated carbons and GAC (a) FSAC900, (b) FSAC800, (c) FSAC700, and (d) GAC. 44 Figure 4.1.2.6 FT-IR spectra of (a) FSP, (b) FSAC900, (c) FSAC800 and (d) FSAC700. 47 Figure 4.1.2.7 The comparison of FT-IR spectra of FSAC900, FSAC800, FSAC700, and FSP. 48 Figure 4.1.2.8 Contact angles of FSAC electrode (a) FSAC900, (b) FSAC800, and (c) FSAC700. 49 Figure 4.1.3.1 Cyclic voltammograms of (a) FSAC900, (b) FSAC800, (c) FSAC700, and (d) GAC in 1 M NaCl with various scan rates. 52 Figure 4.1.3.2 Specific capacitance (F/g) of the FSAC900, FSAC800, FSAC700, and GAC electrode in 1 M NaCl at different scan rates. 53 Figure 4.1.3.3 The electrochemical impedance spectra (EIS) measured at frequency range of 0.1 Hz to 105 Hz of the (a) FSAC900, (b) FSAC800, (c) FSAC700 electrode in 1 M NaCl with curve fitting. 54 Figure 4.1.3.4 The electrochemical impedance spectra (EIS) measured at frequency range of 0.1 Hz to 105 Hz of the FSAC900, FSAC800, FSAC700 and GAC electrode in 1 M NaCl. 55 Figure 4.1.4.1 Electrosorption/desorption limits test of sodium ions in FSAC800 with 200 mg/L sodium chloride. 59 Figure 4.1.4.2 Electrosorption/desorption limits test of chloride ions in FSAC800 with 200 mg/L sodium chloride. 59 Figure 4.1.4.3 Changes of conductivity during electrosorption/desorption processes with FSAC900, FSAC800, FSAC700 electrodes applied in CDI system. 60 Figure 4.1.4.4 Changes of sodium concentration during electrosorption/desorption processes with FSAC900, FSAC800, FSAC700 applied in CDI system. 61 Figure 4.1.4.5 Changes of chloride concentration during electrosorption/desorption process with FSAC900, FSAC800, FSAC700 applied in CDI system. 61 Figure 4.1.4.6 Electrosorption capacity of sodium with FSAC900, FSAC800, FSAC700, and GAC in four cycles of CDI system. 64 Figure 4.1.4.7 Electrosorption capacity of chloride with FSAC900, FSAC800, FSAC700, and GAC in four cycles of CDI system. 64 Figure 4.2.1.1 Thermogravimetric analysis (TGA) of rice husk powder. 67 Figure 4.2.2.1 XRD patterns of original rice husk and rice husk activated carbons. 70 Figure 4.2.2.2 SEM images of the original rice husk powder. (a) x 500 X, (b) flaky structure x 1 K X, (c) strip structure x 5 K X, (d) planar structure x 5 K X. 71 Figure 4.2.2.3 SEM images of the RHACs. (a) RHAC800 1:2 x 5 K X, (b) RHAC800 1:1 x 5 K X, (c) RHAC800 1:2 x 30 K X, (d) RHAC800 1:1 x 30 K X. 72 Figure 4.2.2.4 Nitrogen adsorption (●) - desorption (▲) isotherms of the rice husk activated carbons and GAC (a) RHAC800 1:2, (b) RHAC800 1:1, and (c) GAC. 73 Figure 4.2.2.5 Pore size distribution of the rice husk activated carbons and GAC (a) RHAC800 1:1, (b) RHAC800 1:2, and (c) GAC. 74 Figure 4.2.2.6 FT-IR spectra of (a) RHP, (b) RHAC800 1:2, and, (c) RHAC800 1:1. 77 Figure 4.2.2.7 The comparison of FT-IR spectra of RHAC800 1:2, RHAC800 1:2, and RHP. 78 Figure 4.2.2.8 Contact angles of RHAC electrode (a) RHAC800 1:2, (b) RHAC800 1:1. 79 Figure 4.2.3.1 Cyclic voltammograms of (a) RHAC800 1:2, (b) RHAC800 1:1, and (c) GAC in 1 M NaCl with various scan rates. 82 Figure 4.2.3.2 Specific capacitance (F/g) of the RHAC800 1:2, RHAC800 1:2, and GAC electrode in 1 M NaCl at different scan rates. 83 Figure 4.2.3.3 The electrochemical impedance spectra (EIS) measured at frequency range of 0.1 Hz to 105 Hz of the (a) RHAC800 1:2, (b) RHAC800 1:1 electrode in 1 M NaCl with curve fitting. 84 Figure 4.2.3.4 The electrochemical impedance spectra (EIS) measured at frequency range of 0.1 Hz to 105 Hz of the RHAC800 1:2, RHAC800 1:1, and GAC electrode in 1 M NaCl. 85 Figure 4.2.4.1 Electrosorption/desorption limits test of RHAC800 1:1 with 200 mg/L sodium chloride. 88 Figure 4.2.4.2 Changes of conductivity during electrosorption/desorption processes with RHAC800 1:1, RHAC800 1:2 electrodes applied in CDI system. 88 Figure 4.2.4.3 Sodium concentration changes during electrosorption/desorption process with RHAC800 1:1, RHAC800 1:2 electrodes applied in CDI system. 89 Figure 4.2.4.4 Chloride concentration changes during electrosorption/desorption process with RHAC800 1:1, RHAC800 1:2 electrodes applied in CDI system. 89 Figure 4.2.4.5 Electrosorption capacity of sodium with RHAC800 1:2, RHAC800 1:1, and GAC in four cycles of CDI system. 93 Figure 4.2.4.6 Electrosorption capacity of chloride with RHAC800 1:2, RHAC800 1:1, and GAC in four cycles of CDI system. 93 Figure 4.3.2.1 Cyclic voltammograms of FSAC900 and RHAC800 1:2 in 1 M NaCl at 1 mV/s scan rate. 98 Figure 4.3.2.2 The electrochemical impedance spectra (EIS) measured at frequency range of 0.1 Hz to 105 Hz of the FSAC900 and RHAC800 1:2 electrode in 1 M NaCl. 99 Figure 4.3.3.1 Sodium concentration changes during electrosorption/desorption process with FSAC900 and RHAC800 1:2 electrodes applied in CDI systems. 101 Figure 4.3.3.2 Chloride concentration changes during electrosorption/desorption process with FSAC900 and RHAC800 1:2 electrodes applied in CDI systems. 101 Figure 4.3.3.3 Electrosorption capacity of sodium during four cycles of CDI process with FSAC900 and RHAC800 1:2 electrodes. 103 Figure 4.3.3.4 Electrosorption capacity of chloride during four cycles of CDI process with FSAC900 and RHAC800 1:2 electrodes. 103 List of Table Table 3.2.1.1 Manufactures and purity of experimental chemical. 24 Table 3.2.2.1 Manufactures and models of experimental equipment. 25 Table 4.1.2.1 Porosity characteristics of the FSACs and GAC. 45 Table 4.1.2.2 FTIR functional groups of FSACs and fish scale powder. 48 Table 4.1.3.1 Specific capacitance (F/g) of FSACs and GAC electrode in 1 M NaCl at different scan rates. 53 Table 4.1.3.2 Impedance analyses of FSAC 900, FSAC800, FSAC700, and GAC in 1 M NaCl based on equivalent circuit model. 55 Table 4.1.4.1 The removal efficiency (%) and electrosorption capacity of sodium with FSAC900, FSAC800, FSAC700, and GAC applied in CDI system with 200 mg/L NaCl. 62 Table 4.1.4.2 The removal efficiency (%) and electrosorption capacity of chloride with FSAC900, FSAC800, FSAC700, and GAC applied in CDI system with 200 mg/L NaCl. 63 Table 4.1.4.3 The calculated theoretical conductivity contributions of sodium, chloride and total carbon during electrosorption/desorption with FSAC900. 65 Table 4.2.2.1 Porosity characteristics of the RHACs and GAC. 75 Table 4.2.2.2 FTIR functional groups of RHACs and rice husk powder. 78 Table 4.2.3.1 Specific capacitance (F/g) of RHACs and GAC electrode in 1 M NaCl at different scan rates. 83 Table 4.2.3.2 Impedance analyses of RHAC800 1:2, RHAC800 1:1, and GAC in 1 85 M NaCl based on equivalent circuit model. 85 Table 4.2.4.1 The removal efficiency (%) and electrosorption capacity of sodium chloride with RHAC800 1:1, RHAC800 1:2, and GAC applied in CDI system with 200 mg/L NaCl. 90 Table 4.2.4.2 The removal efficiency (%) and electrosorption capacity of sodium with RHAC800 1:1, RHAC800 1:2, and GAC applied in CDI system with 200 mg/L NaCl. 91 Table 4.2.4.3 The removal efficiency (%) and electrosorption capacity of chloride with RHAC800 1:1, RHAC800 1:2, and GAC applied in CDI system with 200 mg/L NaCl. 92 Table 4.3.1.1 Porosity characteristics of various biomass-derived activated carbons. 96 Table 4.3.1.2 The yield of FSACs and RHACs. 96 Table 4.3.2.1 Specific capacitance (F/g) of FSAC900 and RHAC800 1:2 electrode in 1 M NaCl with various scan rates. 98 Table 4.3.2.2 Impedance analyses of FSAC900 and RHAC800 1:2 in 1 M NaCl based on equivalent circuit model. 99 Table 4.3.2.3 Porosity characteristics of FSAC900 and RHAC800 1:2. 99 Table 4.3.3.1 The removal efficiency (%) and electrosorption capacity of sodium with FSAC900 and RHAC800 1:2 applied in CDI system with 200 mg/L NaCl. 102 Table 4.3.3.2 The removal efficiency (%) and electrosorption capacity of chloride with FSAC900 and RHAC800 1:2 applied in CDI system with 200 mg/L NaCl. 102 |
參考文獻 |
Almasoudi, S., & Jamoussi, B. (2024). Desalination technologies and their environmental impacts: A review. Sustainable Chemistry One World, 1. Alshemary, A. Z., Cheikh, L., & Çardaklı, İ. S. (2024). Extraction and degradation rate analysis of calcium phosphate from diverse fish Bones: A comparative study. Journal of Saudi Chemical Society, 28(3). Beguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 26(14), 2219-2251. Bouchelta, C., Medjram, M. S., Bertrand, O., & Bellat, J. (2008). Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied, 82(1), 70-77. Butler, H. J., Smith, B. R., Fritzsch, R., Radhakrishnan, P., Palmer, D. S., & Baker, M. J. (2018). Optimised spectral pre-processing for discrimination of biofluids via ATR-FTIR spectroscopy. Analyst, 143(24), 6121-6134. Campione, A., Cipollina, A., Bogle, I. D. L., Gurreri, L., Tamburini, A., Tedesso, M. & Micale, G. (2019). A hierarchical model for novel schemes of electrodialysis desalination. Desalination, 465, 79-93. Chen, J., Liu, J., Wu, D., Bai, X., Lin, Y., Wu, T., Zhang, C., Chen, D., & Li, H. (2021). Improving the supercapacitor performance of activated carbon materials derived from pretreated rice husk. Journal of Energy Storage, 44, Part B. Chu, M., Tian, W., Zhao, J., Zou, M., Lu, Z., Zhang, D., & Jiang, J. (2022). A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications. Chemosphere, 307, Part 3. Curto, D., Franzitta, V., & Guercio, A. (2021). A Review of the Water Desalination Technologies. Applied Sciences, 11(2), 670. Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1-3), 1-76. Gao, Y., Xu, S., Yue, Q., Wu, Y., & Gao, B. (2016). Chemical preparation of crab shell-based activated carbon with superior adsorption performance for dye removal from wastewater. Journal of the Taiwan Institute of Chemical Engineers, 61, 327-335. Geczo, A., Giannakoudakis, D. A., Triantafyllidis, K., Elshaer, M. R., Aguado, E., & Bashkova, S. (2021). Mechanistic insights into acetaminophen removal on cashew nut shell biomass-derived activated carbons. Environmental Science and Pollution Research, 28, 58969-58982. González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82, Part 1, 1393-1414. Han, J., Shi, L., Yan, T., Zhang, J., & Zhang, D. (2018). Removal of ions from saline water using N, P co-doped 3D hierarchical carbon architectures via capacitive deionization. Environmental Science: Nano, 5(10), 2337-2345. Huang, B., Shao, H., Liu, N., Xu, Z. J., & Huang, Y. (2015). From fish scales to highly porous N-doped carbon: a low cost material solution for CO2 capture. RSC Advances, 5(107). Islam, M. S., Sultana, A., Saadat, A. H. M., Islam, M. S., Shammi, M., & Uddin, M. K. (2018). Desalination Technologies for Developing Countries: A Review. Journal of Scientific Research, 10(1), 77-97. Johnson, A. M., Venolia, A. W., Wilbourne, R. G., & Newman, J. (1970). The Electrosorb Process for Desalting Water. Kasera, N., Kolar, P., & Hall, S. G. (2022). Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: a review. Biochar, 4(17). Kim, J., Yi, Y., Peck, D., Yoon, S., Jung, D., & Park, H. S. (2019). Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environmental Science: Nano, 6(3), 916-924. Lee, C. L., H'ng, P. S., Paridah, M. T., Chin, K. L., Rashid, U., Maminski, M., Go, W. Z., Nazrin, R. A. R., Rosli, S. N. A., & Khoo, P. S. (2018). Production of bioadsorbent from phosphoric acid pretreated palm kernel shell and coconut shell by two-stage continuous physical activation via N2 and air. Royal Society Open Science, 5(12). Li, G. X., Hou, P. X., Zhao, S. Y., Liu, C., & Cheng, H. M. (2016). A flexible cotton-derived carbon sponge for high-performance capacitive deionization. Carbon, 101, 1-8. Li, H., Xi, H., Zhu, S., Wen, Z., & Wang, R. (2006). Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Microporous and Mesoporous Materials, 96(1-3), 357-362. Liu, Y., Nie, C., Liu, X., Xu, X., Sun, Z., & Pan, L. (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5, 15205-15225. Liu, Y., Chen, T., Lu, T., Sun, Z., Chua, D. H. C., & Pan, L. (2015). Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochimica Acta, 158, 403-409. Liou, T., Chang, F., & Lo, J. (1997). Pyrolysis Kinetics of Acid-Leached Rice Husk. Industrial & Engineering Chemistry Research, 36(3), 568-573. Liou, T., & Wu, S. (2009). Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions. Journal of Hazardous Materials, 171(1-3), 693-703. Lu, B., Hu, L., Yin, H., Mao. X., Xiao, W., & Wang, D. (2016). Preparation and application of capacitive carbon from bamboo shells by one step molten carbonates carbonization. International Journal of Hydrogen Energy, 41(41), 18713-18720. Lu, S., Fang, L., Wang, X., Liu, T. X., Zhao, X., Xu, B. B., Hua, Q., & Liu, H. (2024). Insights into activators on biomass-derived carbon-based composites for electrochemical energy storage. Materials Today Chemistry, 37. Luo, Y., Street, J., Steele, P. H., & Entsminger, E. D. (2016). Activated Carbon Derived from Pyrolyzed Pinewood Char using Elevated Temperature, KOH, H3PO4, and H2O2. BioResources, 11(4), 10433-10477. McCutcheon, J. R., McGinnis, R, L., & Elimelech, M. (2006). Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 278(1-2), 114-123. Menya, E., Olupot, P. W., Storz, H., Lubwama, M., & Kiros, Y. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products. Waste Management, 81, 104-116. MILLER, J. E. Review of Water Resources and Desalination Technologies. (2003). Mishra, R. K., Singh, B., & Acharya, B. (2024). A comprehensive review on activated carbon from pyrolysis of lignocellulosic biomass: An application for energy and the environment. Carbon Resources Conversion, 7(4). Mota, J. A., Chagas, R. A., Vieira, E. F. S., & Cestari, A. R. (2012). Synthesis and characterization of a novel fish scale-immobilized chitosan adsorbent—Preliminary features of dichlorophenol sorption by solution calorimetry. Journal of Hazardous Materials, 229-230, 346-353. Nadakatti, S., Tendulkar, M., & Kadam, M. (2011). Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination, 268(1-3), 182-188. Nahil, M. A., & Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149. Niu, J., Shao, R., Liang, J., Dou, M., Li, Z., Huang, Y., & Wang, F. (2017). Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 36, 322-330. Nurjanah, I., Chang, T., You, S., Huang, C., & Sean, W. (2024). Reverse osmosis integrated with renewable energy as sustainable technology: A review. Desalination, 581. Ozpinar, P., Dogan, C., Demiral, H., Moralo, U., Erol, S., Yildiz, D., Samdan, C., & Demiral, I. (2023). Effect of binder on the electrochemical performance of activated carbon electrodes obtained from waste hazelnut shells: Comparison of PTFE and PVDF. Diamond and Related Materials, 137. Pallarés, J., González-Cencerrado, A. & Arauzo, I. (2018). Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy, 115, 64-73. Park, K., Lee, J., Park, P., Yoon, S., Moon, J., Eum, H., & Lee, C. (2007). Development of a carbon sheet electrode for electrosorption desalination. Desalination, 206(1-3), 86-91. Plessis, A. D. (2023). Water Resources from a Global Perspective. South Africa’s Water Predicament, 101, 1-25. Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J. S., Keesman, K. J., Kaskel, S., Biesheuvel, P. M. & Presser, V. (2013). Direct Prediction of the Desalination Performance of Porous Carbon Electrodes for Capacitive Deionization. Energy and Enviromental Science, 6(12), 3700-3712. Qin, D., Bi, S., You, X., Wang, M., Cong, X., Yuan, C., Yu, M., Cheng, X., & Chen, X. (2022). Development and application of fish scale wastes as versatile natural biomaterials. Chemical Engineering Journal, 428. Rybarczyk, M. K., Peng, H., Tang, C., Lieder, M., Zhang, Q., & Titirici, M. (2016). Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chemistry, 18(19), 5169-5179. Sayed, E. T., Olabi, A. G., Shehata, N., Radi, M. A., Muhaisen, O. M., Rodriguez, C., Atieh, M. A., & Abdelkareem, M. A. (2023). Application of bio-based electrodes in emerging capacitive deionization technology for desalination and wastewater treatment. Ain Shams Engineering Journal, 14(8). Sikiru, S., Dele-Afolabi, T. T., Ghotbi, M. Y., & Rehman, Z. U. (2024). Recent advancements in technology projection on electric double layer effect in battery recycling for energy storage. Journal of Power Sources, 596. Silva, A. P., Argondizo, A., Juchen, P. T., & Ruotolo, L. A. M. (2021). Ultrafast capacitive deionization using rice husk activated carbon electrodes. Separation and Purification Technology, 271. Spencer, W., Senanayake, G., Altarawneh, M., Ibana, D., & Nikolosky, A. N. (2024). Review of the effects of coal properties and activation parameters on activated carbon production and quality. Minerals Engineering, 212. Sun, J., Yan, W., Liu, X., Hu, T., Xiong, Y., Tian, S., Feng, J., Huang, Z., & Zhao, Z. (2024). Rice husk waste-derived super-biochar with the max surface area and Philic-CO2 textural structure: Boosting effect and mechanism of post-desilication. Chemical Engineering Journal, 490. Sun, Y., Xue, S., Sun, J., Li, X., Ou, Y., Zhu, B., & D, M. (2023). Silk-derived nitrogen-doped porous carbon electrodes with enhanced ionic conductivity for high-performance supercapacitors. Journal of Colloid and Interface Science, 645, 297-305. Tang, W. W., He, D., Zhang, C. Y., & Waite, T. D. (2017). Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Water Research, 121, 302-310. Tenno, R., & Nguyen, P. (2016). Multistage Flash Evaporator Control in PDE Representation. IFAC-PapersOnLine, 49(24), 70-75. Teo, E. Y. L., Muniandy, L., Ng, E., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110-119. Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 82(7), 1059-1073. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. Vafakhah, S., Beiramzadeh, Z., Saeedikhani, M., & Yang, H. Y. (2020). A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization. Desalination, 493. Van, K. L., & Thi, T. T. L. (2014). Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International, 24(3), 191-198. Wang, J., Shen, L., Xu, Y., Dou, H., & Zhang, X. (2015). Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New Journal of Chemistry, 39(12), 9497-9503. Weerasinghe, M. I. U., Kumarage, P. M. L., Amarathunga, I. G. K. D., Bandara, T. M. W. J., Velauthapillai, D., Karunarathne, B. C., Punniamoorthy, R., Rajapakse, R. M. G., & Kumara, G. R. A. (2024). Active carbon derived from rice husk as sustainable substitutes for costly platinum electrodes in dye-sensitized solar cells. Journal of Science: Advanced Materials and Devices, 9(3). Xia, K., Gao, Q., Jiang, J., & Hu, J. (2008). Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 46(13), 1718-1726. Xu, K., Sun, Q., Guo, Y., Zhang, Y., & Dong, S. (2013). Preparation of super-hydrophobic white carbon black from nano-rice husk ash. Research on Chemical Intermediates, 40, 1965-1973. Xue, N., Lu, J., Gu, D., Lou, Y., Yuan, Y., Li, G., Kumagai, S., Saito, Y., Yoshioka, T., & Zhang, N. (2023). Carbon footprint analysis and carbon neutrality potential of desalination by electrodialysis for different applications. Water Research, 232. Zhang, X. F., Wang, B.m Yu, J., Wu, X. N., Zang, Y. H., Gao, H. C., Su, P. C., & Hao, S. Q. (2018). Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization. RSC Advances, 8(3), 1159-1167. Zhou, F., Li, K., Hang, F., Zhang, Z., Chen, P., Wei, L., & Xie, C. (2022). Efficient removal of methylene blue by activated hydrochar prepared by hydrothermal carbonization and NaOH activation of sugarcane bagasse and phosphoric acid. RSC Advances, 12(3), 1885-1896. Zingare, P. A., Dhoble, S. J., & Deshmukh, A. D. (2022). Highly stable fish-scale derived lamellar carbon for high performance supercapacitor application. Diamond and Related Materials, 124. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信