§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0308201617530100
DOI 10.6846/TKU.2016.00107
論文名稱(中文) 鋁基/ AlFe介金屬複合材料之製程與磨耗性質研究
論文名稱(英文) A Study on Process and Wearing Properties of Al/AlFe Intermetallic Composites
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 曾郁峰
研究生(英文) Yu-Fong Tseng
學號 604350057
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-09
論文頁數 94頁
口試委員 指導教授 - 林清彬(cblin@mail.tku.edu.tw)
委員 - 張天立(tlchang@ntnu.edu.tw)
委員 - 劉承揚(cyliu@mail.tku.edu.tw)
關鍵字(中) 鋁基/ AlFe介金屬顆粒複合材料
界面擴散
重複摺疊
退火
磨耗
關鍵字(英) Al/AlFe Intermetallic particles composites
Interfacial diffusion
folding
forging
Annealing
hardness
wear
第三語言關鍵字
學科別分類
中文摘要
AlFe金屬間化合物具有低密度、高比強度、抗氧化和耐熱性,在150℃~350℃工作溫度範圍內可以取代部分應用於航太產業的鈦合金,能顯著地減輕飛行器的重量及降低成本,但是硬脆的AlFe金屬間化合物在拉伸及磨耗易引發微裂紋的產生,進而降低AlFe介金屬的磨耗與力學性能。本研究提出一種新穎的製作方法,使用不同編織型態的鐵網浸鍍鋁,經由重複鍛造、摺疊及中間退火製程,製得鋁基/不同重量百分比AlFe介金屬顆粒型複合材料,並探討不同AlFe介金屬顆粒含量、不同荷重、不同磨耗速率對硬度及磨耗性質之影響,實驗結果硬度隨AlFe介金屬顆粒含量增加而上升。複合材料的磨耗率並不隨AlFe介金屬顆粒含量增加而下降,5.3wt%AlFe介金屬顆粒含量之磨耗率最低,其中PV值為118時磨耗率最高,對應的條件為荷重為98kPa,滑動速率為1.2m/s。PV值為56時磨耗率最低,對應的條件為荷重為19.6kPa,滑動速率為2.87m/s。
英文摘要
AlFe intermetallic compound has low density, high specific strength, high oxidation resistance and heat resistance. It can be replaced by part of the titanium alloy in the aerospace industry at 150℃ - 350℃ working temperature range. It can obviously reduce the weight of the aircraft and keep cost down, but the hard brittle AlFe intermetallic compound easily produce micro-cracks when it’s stretching thus reduce the wear and mechanical properties. This study used repeat forging, folding and intermediate annealing proposes to fabricate an AlFe intermetallic compound reinforced aluminum matrix composite and has been probed the effect of AlFe intermetallic particle contents, loading and sliding speed on wearing properties. The experimental results show that the hardness was increased with increasing AlFe intermetallic particles content and the 5.3wt% content of AlFe intermetallic particle can get the lowest wear rate. When PV (loading x sliding speed) value is 118 had the highest the wear rate corresponding to condition is the load of 98kPa and the sliding speed of 1.2m/s. On the contrary, when PV value is 56 had the lowest the wear rate correspond to condition is the load of 19.6kPa and the sliding speed of 2.87m/s.
第三語言摘要
論文目次
總目錄
壹、導論	1
1.1前言	1
1.2國內外相關的研究及參考文獻	3
1.2.1合金之專對AlFe合金的顯微組織	3
1.2.2鋁基複合材料	5
1.2.3重複摺疊與輥壓	14
1.2.4鋁基/ AlFe介金屬複合材料的磨耗	17
1.3研究動機	19
貳、實驗方法	20
2.1實驗材料	20
2.2實驗設備	20
2.3材料選擇	21
2.4鋁基/AlFe介金屬複合材料的製造	21
2.5鋁基/AlFe介金屬複合材料的重量百分濃度計算	24
2.6鋁基/AlFe介金屬複合材料的顯微結構觀察與界面分析	24
2.6.1 共軛焦雷射掃描顯微鏡	24
2.6.2 X光繞射儀(XRD) 24
2.7鋁基/AlFe介金屬複合材料的硬度測試 25 
2.8鋁基/AlFe介金屬複合材料的磨潤性質測試 25 
參、結果與討論 27 
3.1鋁基/AlFe介金屬複合材料的形成機制 27 
3.1.1 AlFe介金屬顆粒形成的機制 27
3.1.2不同重覆摺疊、鍛造及中間退火次數之鋁基/AlFe介金屬複合材料的顯微結構 30
3.1.3鋁基/不同重量百分濃度AlFe介金屬複合材料的顯微結構 40
3.2鋁基/不同重量百分濃度AlFe介金屬複合材料的硬度 45
3.3鋁基/AlFe介金屬複合材料的磨耗性質 46
3.3.1磨耗率 46 
3.3.2磨耗面的顯微結構 48
3.3.3磨屑的顯微結構 57
3.3.4滑動速率對磨耗率的影響 78
3.3.5荷重對磨耗率的影響 81
3.3.6 PV值對磨耗率的影響 83
肆、結論 85
伍、參考文獻 87

圖目錄
圖2.1鋁基/AlFe介金屬複合材料中編織鐵網的型態(a)田字編織法;(b)同心圓編織固定田字編織法;(c)雙線雙田字編織法;(d)米字編織法;(e)雙田字編織法	23
圖2.2(a)鋁完全包覆鐵網複合板材;(b)複合板材東西向對摺;(c)複合板材南北向對摺的示意圖	23
圖2.3 磨耗測試:鍵與鐶試片之尺寸規格圖	26
圖3.1鋁基/AlFe介金屬顆粒型複合材料形成過程的示意圖(a)鍛造時鐵線鍛造成薄片;(b)鐵薄片產生剪切破斷;(c)Fe2Al5介金屬形狀的側視圖;(d)Fe2Al5介金屬部份貫穿鐵薄片;(e)散佈在鋁基的AlFe金屬間化合物	28
圖3.2鋁基材包覆雙田字編織法型態的鐵網後,經由10次重複摺疊、鍛造及中間退火的共軛焦照片	30
圖3.3鋁基材包覆雙田字編織法型態的鐵網後,經由2次重複摺疊、鍛造及中間退火的共軛焦照片(a)剪切破斷面型態;(b)界面反應層如箭頭示之共軛焦顯微結構照片	31
圖3.4鋁基材包覆雙田字編織法型態的鐵網後,經由2次重複摺疊、鍛造及中間退火的XRD圖譜分析	32
圖3.5鋁基材包覆雙田字編織法型態的鐵網後,經由2次重複摺疊、鍛造及中間退火,Fe2Al5金屬間化合物均勻分散在鋁基地的共軛焦照片	33
圖3.6鋁基材包覆雙田字編織法型態的鐵網後,經由4次重複摺疊、鍛造及中間退火的共軛焦照片;(a)剪切破斷面型態;(b)界面反應層如箭頭示之共軛焦顯微結構照片	34
圖3.7鋁基材包覆雙田字編織法型態的鐵網後,經由4次重複摺疊、鍛造及中間退火的共軛焦照片	35
圖3.8鋁基材包覆雙田字編織法型態的鐵網後,經由4次重複摺疊、鍛造及中間退火後基地不均勻塑性變形的共軛焦照片	35
圖3.9鋁基材包覆雙田字編織法型態的鐵網後,經由6次摺疊、鍛造及中間退火的共軛焦照片;(a)Fe2Al5金屬間化合物分散在鋁基地;(b)含量較多的條狀AlFe金屬間化合物與含量較少的Fe2Al5金屬間化合物;(c)含量較多的Fe2Al5金屬間化合物及少量的條狀AlFe金屬間化合物	37
圖3.10鋁基材包覆雙田字編織法型態的鐵網後,經由8次重複摺疊、鍛造及中間退火的共軛焦照片;(a)AlFe金屬間化合物均勻分散在鋁基地;(b)小尺寸FeAl3及大尺寸Fe2Al5金屬間化合物如箭頭A、B所示	39
圖3.11鋁基材包覆雙田字編織法型態的鐵網後,經由10次摺疊、鍛造及中間退火的共軛焦照片	40
圖3.12 經由10次摺疊、鍛造集中間退火的共軛焦照片;AlFe介金屬化合物的含量(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4wt%;(e)5.3wt%;(f)9.0wt%	 42
圖3.13經由10次摺疊、鍛造集中間退火的XRD;AlFe介金屬化合物的含量(a)2.7wt%;(b)3.9wt%;(c)4.4wt%;(d)5.3wt%;(e)9.0wt%	45
圖3.14 鋁基/不同重量百分比AlFe介金屬複合材料之磨耗率變化圖	48
圖3.15鋁基/不同重量百分比AlFe介金屬的上試片在滑動速率為1.2m/s和荷重98kPa下的磨耗面之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f)9.0wt%	50
圖3.16 鋁基/不同重量百分比AlFe介金屬的上試片在滑動速率為2.03m/s和荷重98kPa下的磨耗面之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f)9.0wt%	51
圖3.17 在滑動速率為2.87m/s和荷重98kPa下,不同AlFe介金屬顆粒含量上試片之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f)9.0 wt%	 52
圖3.18 在滑動速率為1.2m/s和荷重49kPa下,不同AlFe介金屬顆粒含量上試片之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f)9.0 wt%	 53
圖3.19 在滑動速率為2.03m/s和荷重49kPa下,不同AlFe介金屬顆粒含量上試片磨耗面之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f)9.0 wt%  54
圖3.20 在滑動速率為2.87m/s和荷重49kPa下,不同AlFe介金屬顆粒含量上試片磨耗面之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f)9.0 wt%	 55
圖3.21 在滑動速率為1.2m/s和荷重19.6kPa下,不同AlFe介金屬顆粒含量上試片磨耗面之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f) 9.0wt%	 55
圖3.22 在滑動速率為2.03m/s和荷重19.6kPa下,不同AlFe介金屬顆粒含量上試片磨耗面之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f) 9.0wt%	56
圖3.23 在滑動速率為2.87m/s和荷重19.6kPa下,不同AlFe介金屬顆粒含量上試片磨耗面之共軛顯微照片(a)0wt%;(b)2.7wt%;(c)3.9wt%;(d)4.4 wt%;(e)5.3 wt%;(f) 9.0wt%	57
圖3.24 在滑動速率為2.03m/s和荷重19.6kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	 59
圖3.25 在滑動速率為2.03m/s和荷重49kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	 62
圖3.26 在滑動速率為2.03m/s和荷重98kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	 64
圖3.27 在滑動速率為2.87m/s和荷重19.6kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	 66
圖3.28 在滑動速率為2.87m/s和荷重49kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	 69
圖3.29 在滑動速率為2.87m/s和荷重98kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	 71
圖3.30 在滑動速率為1.2m/s和荷重19.6kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	 73
圖3.31 在滑動速率為1.2m/s和荷重49kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	76
圖3.32 在滑動速率為1.2m/s和荷重98kPa下,不同AlFe介金屬顆粒含量磨屑之共軛顯微照片(a)(b)0wt%;(c)(d)2.7wt%;(e)(f)3.9wt%;(g)(h)4.4 wt%;(i)(j)5.3 wt%;(k)(l)9.0wt%	78
圖3.33 鋁基/不同重量百分比AlFe介金屬複合材料在荷重19.6kPa與三種磨耗速率(1.2m/s,2.03m/s與2.87m/s)之磨耗率變化圖	79
圖3.34 鋁基/不同重量百分比AlFe介金屬複合材料在荷重49kPa與三種磨耗速率(1.2m/s,2.03m/s與2.87m/s)之磨耗率變化圖	80
圖3.35鋁基/不同重量百分比AlFe介金屬複合材料在荷重98kPa與三種磨耗速率(1.2m/s,2.03m/s與2.87m/s)之磨耗率變化圖	 81
圖3.36 鋁基/AlFe介金屬複合材料在磨耗速率為1.2m/s與三種荷重之磨耗率變化圖	82
圖3.37 鋁基/AlFe介金屬複合材料在磨耗速率為2.03m/s與三種荷重之磨耗率變化圖	82
圖3.38 鋁基/AlFe介金屬複合材料在磨耗速率為2.87m/s與三種荷重之磨耗率變化圖	83
圖3.39 鋁基/AlFe介金屬複合材料之磨耗率變化圖	84

表目錄
表3.1 鋁基/AlFe介金屬複合材料的洛氏硬度	46
參考文獻
[1]	Sakata I.F., Langenbeck S.L., “PM aluminum alloy in place of titanium based on elevated temperature aluminum alloy for aerospace applications.” Aerospace Engineering, Vol. 3, No. 4 (1984) 152-161
[2]	Nack J., Kim D.H., “Light materials for transportation systems” Jom, Vol. 12(1994) 44-47
[3]	Baradeswaran, A., and A. Elaya Perumal. “Wear and mechanical characteristics of Al 7075/graphite composites.” Composites Part B: Engineering, Vol. 56 (2014) 472-476.
[4]	Baradeswaran, A., and A. Elaya Perumal. “Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites.” Composites Part B: Engineering, Vol. 56 (2014) 464-471.
[5]	Treacy, M. M. J., T. W. Ebbesen, and J. M. Gibson “Exceptionally high Young's modulus observed for individual carbon nanotubes.” Nature, Vol. 381 (1996) 678-680.
[6]	Ebbesen, Thomas W., Hidefumi Hiura, Margaret E. Bisher, Michael M. J. Treacy, Julie L. Shreeve-Keyer, Robert C. Haushalter “Decoration of carbon nanotubes.” Advanced Materials,Vol. 8, No. 2 (1996) 155-157.
[7]	Gong, X., Liu, J., Baskaran, S., Voise, R. D., and Young, J. S. “Surfactant-assisted processing of carbon nanotube/polymer composites.” Chemistry of materials Vol. 12, No. 4 (2000) 1049-1052.
[8]	Bakshi, S. R., D. Lahiri, and Arvind Agarwal. “Carbon nanotube reinforced metal matrix composites-a review.” International Materials Reviews Vol. 55, No. 1 (2010) 41-64. 
[9]	Padture, Nitin P. “Multifunctional Composites of Ceramics and Single‐Walled Carbon Nanotubes.” Advanced Materials Vol. 21, No. 17 (2009) 1767-1770. 
[10]	Chen, W. X., Tu, J. P., Wang, L. Y., Gan, H. Y., Xu, Z. D., and Zhang, X. B. “Tribological application of carbon nanotubes in a metal-based composite coating and composites.” Carbon Vol. 41, No. 2 (2003) 215-222.
[11]	Zhang, R., Ning, Z., Zhang, Y., Zheng, Q., Chen, Q., Xie, H., Zhang,Q., Qian,W and Wei, F. “Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions.” Nature nanotechnology Vol. 8, No. 12 (2013): 912-916. 
[12]	Dong, S. R., J. P. Tu, and X. B. Zhang. “An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes.” Materials Science and Engineering: A Vol. 313, No. 1 (2001) 83-87. 
[13]	Kuzumaki T, Miyazawa K, Ichinose H and Ito K. “Processing of carbon nanotube reinforced aluminum composite” J Mater Res, Vol. 13, No. 9 (1998) 2445-2449.
[14]	Hollingsworth E.H.,Frank G.R.,Willet R.E., “Idenfication of new Al-Fe constituent,FeAl6” Trans.Met.Soc.AIME, Vol. 224 (1962) 188-189.
[15]	Yoneyama, N., Mizoguchi, K., Kumai, S., Sato, A., and Kiritani, M., “Plastic deformation of Al13Fe4 particles in Al–Al13Fe4 by high-speed compression.” Materials Science and Engineering: A, Vol. 350, No.1 (2003): 117-124.
[16]	Liang D.,Gilgien P.G.,Jones H., “Effect of silicon alloying additions on growth temperature and primary spacing of Al3Fe in Al-8%Fe alloy” Scirpta  Metall.Mater, Vol. 32, No. 10 (1995) 1513-1518.
[17]	Christian J.Simensen,Ramasamy V., “Determination of phase present in cast material of an Al-0.5%Fe-0.2%Si alloy” Z.Metallkde, Vol. 68 (1997) 428-431.
[18]	Anantha N,Samuel F.H.,Gruzleski J.E., “Crystallization behavior of iron containing intermetallic compound in 319 aluminum alloy,” Metall.Mater.Trans.A, Vol. 25A, No. 8 (1994) 1761-1773.
[19]	Anne L. “Precipitation of primary particles in Al-Fe-Mn alloys experimental and simulation,” Z. Metallkde, Vol. 81, No. 7 (1900) 484-489.
[20]	V. Raghavan “Al-Mn-Si (Aluminum-Manganese-Silicon) Find out how to access preview-only content,” Journal of Phase Equilibria and Diffusion, Vol. 28, No. 2 (2007) pp 192-196.
[21]	Gustatsson G.,Thorvaldssom T.,Dunlop G.L. “The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloy,” Metallurgical Transaction A, Vol. 17A, No. 1 (1986) 45-52.
[22]	Senkov O.N.,Froes F.H.,Stolyarov V.V. “Microstructure and of aluminum-iron alloys subjected to severe plastic deformation” Scripta Materialia, Vol. 38, No. 10 (1998) 1511-1516.
[23]	Senkov O.N., O.N.,Froes F.H.,Stolyarov V.V. “Microstructure and microhardness of an Al-Fe alloy subjected to severe plastic deformation and aging,” Nanostructured Materials, Vol. 10, No. 5 (1998) 691-698.
[24]	Tcherdyntsev V.V.,Kaloshkin S.D.,Gunderov D.V. “Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation,” Materials Science and Engineering, Vol. A, No. 375 (2004) pp. 888-893.
[25]	Jeevan, V., C. S. P. Rao, and N. Selvaraj. “Development of a New Aluminum Matrix Composite Reinforced With Silicon Carbide (SiC),” Magnesium, Vol. 140(2013) pp. 99-67.
[26]	Candan, E., H. Ahlatci, and H. Cimenoglu. “Abrasive wear behaviour of Al–SiC composites produced by pressure infiltration technique,” Wear, Vol. 247, No. 2 (2001) pp. 133-138.
[27]	Garcia-Cordovilla, C., J. Narciso, and E. Louis. “Abrasive wear resistance of aluminium alloy/ceramic particulate composites,” Wear, Vol. 192, No. 1 (1996) pp. 170-177.
[28]	Min, S. O. N. G. “Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites,” Transactions of Nonferrous Metals Society of China, Vol. 19, No. 6 (2009) pp. 1400-1404.
[29]	Dabade, U. A., and M. R. Jadhav. “Experimental Study of Surface Integrity of Al/SiC Particulate Metal–matrix Composites in Hot Machining,” Procedia CIRP, Vol. 41 (2016) pp. 914-919.
[30]	Kang, Yung-Chang, and Sammy Lap-Ip Chan. “Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites,” Materials Chemistry and Physics, Vol. 85, No. 2 (2004) pp. 438-443.
[31]	Park, B. G., A. G. Crosky, and A. K. Hellier. “Material characterisation and mechanical properties of Al2O3-Al metal matrix composites,” Journal of materials science, Vol. 36, No. 10 (2001) pp. 2417-2426.
[32]	Konopka, K., and M. Szafran. “Fabrication of Al2O3–Al composites by infiltration method and their characteristic,” Journal of Materials Processing Technology, Vol. 175, No. 1 (2006) pp. 266-270.
[33]	Travitzky, N. A. “Effect of metal volume fraction on the mechanical properties of alumina/aluminum composites,” Journal of materials science, Vol. 36, No. 18 (2001) pp. 4459-4463.
[34]	Hanabe, M. R., and P. B. Aswath. “Al2O3/Al particle-reinforced aluminum matrix composite by displacement reaction,” Journal of materials research, Vol. 11, No. 06 (1996) pp. 1562-1569.
[35]	Krishnan, B. P., M. K. Surappa, and P. K. Rohatgi. “The UPAL process: a direct method of preparing cast aluminium alloy-graphite particle composites,” Journal of materials science, Vol. 16, No. 5 (1981) pp. 1209-1216.
[36]	G. S. Upadhyaya, “Powder Metaiiurgy, Metal Matrix Composites, an Overview,” Met. Mater. Process, Vol. 1 (1989) pp. 17-28.
[37]	D. G. Evans, P. L. Morris, R. W. Hains, C. Jowett and P. Achim, “Production Extrusion of AA6061-SiC Metal Matrix Composites,” Alcan, Kingstion (1989).
[38]	Biswas, S. K., and B,N Pramila Bai. “Dry wear of Al-graphite particle composites,” Wear, Vol. 68, No. 3 (1981) pp. 347-358.
[39]	A. N. Abd E1-Azim, A. M. E1-Sheikh, F. A. E1-Bassyouni and S. F. Moustafa, “Proceedings of the Sixth International Conference on Mechanical Behaviour of Materials,” Kyoto, Japan, Vol. 3 (1991) pp. 441.
[40]	Muthukumarasamy, S., Guruprasad, A., Sudhakar, A., and Seshan, S., “The performance of zinc alloy based metal matrix composites produced through squeeze casting,” Material and manufacturing process, Vol. 11, No. 3 (1996) pp. 351-366.
[41]	Chiou, Jeng-Maw, and D. D. L. Chung. “Characterization of metal-matrix composites fabricated by vacuum infiltration of a liquid metal under an inert gas pressure,” Journal of materials science, Vol. 26, No. 10 (1991) pp. 2583-2589.
[42]	M. K. Aghajanian, J. T. Burke, D. H. White and A. S. Nagelberg, “A New Infiltration Process for the Fabrication of Metal Matrix Composites,” SAMPE Symposium and Exposition Series, Vol. 34 (1989) pp. 818-823.
[43]	C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li and Q. Cui “An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites. Advanced materials,” Vol. 19, No. 8 (2007) pp. 1128- 1132.
[44]	Morsi, K., Esawi, A. M. K., Lanka, S., Sayed, A., and Taher, M., “Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders,” Composites Part A: Applied Science and Manufacturing 41.2 (2010): 322-326. 
[45]	Esawi, A., and K. Morsi. “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 2 (2007) pp. 646- 650.
[46]	C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma and D. H. Wu “Fabrication of aluminum–carbon nanotube composites and their electrical properties,” Carbon, Vol. 37, No. 5 (1999) pp. 855- 858.
[47]	Zhong, Rong, Hongtao Cong, and Pengxiang Hou. “Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes,” Carbon, Vol. 41, No. 4 (2003) pp. 848-851.
[48]	Deng, C. F., Zhang, X. X., Wang, D. Z., and Ma, Y. X., “Calorimetric study of carbon nanotubes and aluminum,” Materials Letters, Vol. 61, No. 14 (2007) pp. 3221-3223.
[49]	Kuzumaki, T., Ujiie, O., Ichinose, H., and Ito, K., “Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite,” Advanced Engineering Materials, Vol. 2, No. 7 (2000) pp. 416-418.
[50]	Cha, S. I., Kim, K. T., Arshad, S. N., Mo, C. B., and Hong, S. H., “Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing,” Advanced Materials, Vol. 17, No. 11 (2005) pp. 1377- 1381.
[51]	T. Kuzumaki, K. Miyazawa, H. Ichinose and K. “Ito Processing of carbon nanotube reinforced aluminum composite,” Journal of materials Research, Vol. 13, No. 09 (1998) pp. 2445-2449.
[52]	C. F. Deng, X. Zhang, Y. Ma and D. Wang “Fabrication of aluminum matrix composite reinforced with carbon nanotubes,” Rare Metals, Vol. 26, No. 5 (2007) pp. 450-455.
[53]	C. F. Deng, D. Z. Wang, X. X. Zhang and A. B. Li “Processing and properties of carbon nanotubes reinforced aluminum composites,” Materials Science and Engineering: A, Vol. 444, No. 1 (2007) pp. 138-145.
[54]	A. M. K. Esawi and M. A. E. Borady. “Carbon nanotube-reinforced aluminum strips,” Composites Science and Technology, Vol. 68, No. 2 (2008) pp. 486-492.
[55]	A. M. K. Esawi, K. Morsi, A. Sayed, A. A. Gawad and P. Borah “Fabrication and properties of dispersed carbon nanotube–aluminum composites,” Materials Science and Engineering: A, Vol. 508, No. 1 (2009) pp. 167-173.
[56]	H. J. Choi, G. B. Kwon, G. Y. Lee and D. H. Bae “Reinforcement with carbon nanotubes in aluminum matrix composites,” Scripta Materialia, Vol. 59, No. 3 (2008) pp. 360-363.
[57]	A. M. K. Esawi, K. Morsi, A. Sayed, A. A. Gawad and P. Borah “Fabrication and properties of dispersed carbon nanotube–aluminum composites,” Materials Science and Engineering: A, Vol. 508, No. 1 (2009) pp. 167-173.
[58]	Chunfeng, Deng, Zhang Xuexi, and Wang Dezun. “Chemical stability of carbon nanotubes in the 2024Al matrix,” Materials Letters, Vol. 61, No. 3 (2007) pp. 904-907.
[59]	Srivastava, S., and S. Mohan. “Study of wear and friction of Al-Fe metal matrix composite produced by liquid metallurgical method,” Tribol Industry, Vol. 33, No. 3 (2011) pp. 128-137.
[60]	Ahmed, Shafaat, A. S. M. A. Haseeb, and A. S. W. Kurny. “Study of the wear behaviour of Al–4.5% Cu–3.4% Fe in situ composite: Effect of thermal and mechanical processing,” Journal of materials processing technology, Vol. 182, No. 1 (2007) pp. 327-332.
[61]	Minhaj, Tamzid Ibn, Md Delower Hossain, and A. S. W. Kurny. “Effect of Mg on the wear behaviour of as-cast Al-4.5% Cu-3.4% Fe in-situ composite,” American Journal of Materials Engineering and Technology, Vol. 3, No. 1 (2015) pp. 7-12.
[62]	Panda, Deepankar, Lailesh Kumar, and Syed Nasimul Alam. “Development of Al-Fe 3 Al nanocomposite by powder metallurgy route,” Materials Today: Proceedings, Vol. 2, No. 4 (2015) pp. 3565-3574.
[63]	Agarwal, R., Mohan, A., Mohan, S., and Gautam, R. K., “Synthesis and characterization of Al/Al3Fe nanocomposite for tribological applications,” Journal of Tribology, Vol. 136, No. 1 (2014) pp. 1-12.
[64]	Venkateswaran, K., M. Kamaraj, and K. Prasad Rao. “Dry sliding wear of a powder metallurgy copper-based metal matrix composite reinforced with iron aluminide intermetallic particles,” Journal of composite materials, Vol. 41, No. 14 (2007) pp. 1713-1728.
[65]	Dursun, Ö., Tansel, T., Hatice, E., and İbrahim, Ç. “Synthesis, characterization and dry sliding wear behavior of in-situ formed TiAl3 precipitate reinforced A356 alloy produced by mechanical alloying method,” Materials Research, Vol. 18, No. 4 (2015) pp. 813-820.
[66]	Lee, I. S., P. W. Kao, and N. J. Ho. “Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing,” Intermetallics, Vol. 16, No. 9 (2008) pp. 1104-1108.
[67]	Hsu, C. J., P. W. Kao, and N. J. Ho. “Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing,” Materials Letters, Vol. 61, No. 6 (2007) pp. 1315-1318.
[68]	Crone, Wendy C., Alief N. Yahya, and John H. Perepezko. “Bulk shape memory NiTi with refined grain size synthesized by mechanical alloying,” Materials Science Forum. Vol. 386. Transtec Publications; 1999, 2002. , Vol. 136, No. 1 (2014) pp. 1-12.
[69]	Battezzati, Livio, Carlo Antonione, and Franco Fracchia. “Ni-Al intermetallics produced by cold-rolling elemental sheets,” Intermetallics, Vol. 3, No. 1 (1995) pp. 67-71.
[70]	Michaelsen, C., G. Lucadamo, and K. Barmak. “The early stages of solid-state reactions in Ni/Al multilayer films,” Journal of applied physics, Vol. 80, No. 11 (1996) pp. 6689-6698.
[71]	Atzmon, Michael. “In situ thermal observation of explosive compound-formation reaction during mechanical alloying,” Physical review letters, Vol. 64, No. 4 (1990) pp. 487.
[72]	Cardellini, F., G. Mazzone, and M. Vittori Antisari. “Solid state reactions and microstructural evolution of Al-Ni powders during high-energy ball milling,” Acta materialia, Vol. 44, No. 4 (1996) pp. 1511-1517.
[73]	Sieber, H., and J. H. Perepezko. “Direct formation of the AlNi3 phase in Al-75Ni cold rolled multilayers,” Journal of materials science letters, Vol. 18, No. 18 (1999) pp. 1449-1451.
[74]	Battezzati, L., Pappalepore, P., Durbiano, F., and Gallino, I., “Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing,” Acta materialia, Vol. 47, No. 6 (1999) pp. 1901-1914.
[75]	Sieber, H., Park, J. S., Weissmüller, J., and Perepezko, J. H., “Structural evolution and phase formation in cold-rolled aluminum–nickel multilayers,” Acta materialia, Vol. 49, No. 7 (2001) pp. 1139-1151.
[76]	Sieber, H., and J. H. Perepezko. “In-situ TEM phase formation in cold rolled aluminum-nickel multilayers,” Materials Research Society Symposium Proceedings. Vol. 481. Materials Research Society, (1998). 
[77]	F. Bordeaux and A. R. Yavari, Ltpcm, CNRS UA29, BP. 75-38402
[78]	Schwarz, R. B., and W. L. Johnson. “Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals,” Physical Review Letters, Vol. 51, No. 5 (1983) pp. 415.
[79]	Schwarz, R. B., Wong, K. L., Johnson, W. L., and Clemens, B. M., “A study of amorphous alloys of Au with group III A elements (Y and La) formed by a solid-state diffusion reaction,” Journal of non-crystalline solids, Vol. 61 (1984) pp. 129-134.
[80]	Atzmon, M., Verhoeven, J. D., Gibson, E. D., and Johnson, W. L., “Formation and growth of amorphous phases by solid-state reaction in elemental composites prepared by cold working,” Applied physics letters, Vol. 45, No. 10 (1984) pp. 1052-1053.
[81]	Bordeaux, F., A. R. Yavari, and P. Desre., “Formation of amorphous phase by solid state reaction in elemental composites prepared by cold rolling,” Materials science and engineering, Vol. 97 (1988) pp. 129-132.
[82]	L. Schuiz, Proceedings of the 5th International Conference on Rapidly Quenched Metals, edited by S. Steeb and H. Warlimant ,North-Holland, Amsterdam, (1985) pp. 1585.
[83]	W. K. Warburton and D. Turnbull., “Diffusion in Solids,” Recent Developments ,Academic, New York, (1975) pp. 171
[84]	Lee, J. M., Kang, S. B., Sato, T., Tezuka, H., and Kamio, A., “Dry sliding wear behavior of A2218/Al3Fe composites fabricated by plasma synthesis method,” Materials Transactions, Vol. 43, No. 7 (2002) pp. 1638-1646.
[85]	Abro, Muhammad Ali, and Dong Bok Lee., “Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas,” Metals, Vol. 6, No. 2 (2016) pp. 38.
[86]	Novák, P., Michalcová, A., Marek, I., Mudrová, M., Saksl, K., Bednarčík, J., Zikmunde, P., and Vojtěch, D., “On the formation of intermetallics in Fe–Al system–An in situ XRD study,” Intermetallics, Vol. 32 (2013) pp. 127-136.
[87]	E. Orowan, discussion in “Symposium on Internal Stresses,” Institute of Metals, London,(1947) pp.451.
[88]	M. F. Ashby, in proc. Second Bolton Landing Conf. “On Oxide Dispersion Strengthening,” Gordon and Breach, Science Publishers, Inc., New York, (1968).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信