§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0307202500535500
DOI 10.6846/tku202500479
論文名稱(中文) 桌上型與沉浸式自然科VR數位教材對國中生性別、學習成效、學習動機與認知負荷的影響
論文名稱(英文) Effects on Gender, Learning Achievement, Motivation and Cognitive Load in Middle School Sciences Computer-Based and Immersive Virtual Reality Learning Environment
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 教育科技學系碩士班
系所名稱(英文) Department of Educational Technology
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 113
學期 2
出版年 114
研究生(中文) 章定閎
研究生(英文) Ding-Hong Chang
學號 610730151
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2025-06-16
論文頁數 80頁
口試委員 口試委員 - 岳修平(yueh@ntu.edu.tw)
口試委員 - 李世忠
指導教授 - 賴婷鈴(tlai@mail.tku.edu.tw)
關鍵字(中) 虛擬實境
學習成效
學習動機
認知負荷
性別
關鍵字(英) Virtual Reality
Leaning Achievement
Learning Motivation
Cognitive Load
Gender
第三語言關鍵字
學科別分類
中文摘要
近年來將科技融入教學、教育訓練的案例越來越多,過去研究也指出融入虛擬實境與傳統教學模式相比,雖無法明顯提高學生的學習成效,但能有效提升學生的學習動機,改善現今學生動機不足的問題。也有研究指出男女生在理化科的學習動機上也有差異,因此要如何設計符合現今學生的數位教材是未來數位教材設計者共同面對的難題。本研究將以國中八年級「光的折射與成像」單元,製作虛擬實境數位教材,並使用桌上型、沉浸式虛擬實境兩種虛擬實境類型呈現,探討不同類型VR、學習成效、學習動機與認知負荷之間的關係。
本研究將採用準實驗研究法,研究對象共40名九年級學生,依性別及不同類型的VR分組並以一人一機方式進行實驗。不同類型VR的教材內容、難度、呈現方式皆相同,僅操作與呈現方式不同。
實驗結果顯示:虛擬實境教材雖對學生的學習成效後測有幫助、學習動機無太大改變,但在統計上皆未達到顯著標準。內在認知負荷的差異達顯著水準(p=.006),但有效認知負荷差異未達顯著。
英文摘要
In recent years, the integration of technology into teaching and educational training has been on the rise. Previous studies have indicated that, compared to traditional teaching methods, incorporating virtual reality (VR) may not significantly enhance students’ learning achievement but can effectively improve their learning motivation, addressing the issue of low motivation in today’s students. However, other research has pointed out gender differences in learning motivation, particularly in physics and chemistry subjects, making it a challenge for educators to create materials that suit modern students.
This study focuses on the "Refraction and Image Formation of Light" unit for eighth-grade students, developing digital teaching materials presented via desktop computers and immersion virtual reality to explore the relationships among gender, different types of virtual reality , learning achievement ,learning motivation and cognitive load . A quasi-experimental research method were used, involving 40 ninth-grade students who divided by gender and platform and assigned one device per person for the experiment. The digital materials on both platforms have identical content, difficulty, and presentation style, differing only in operational and display methods.
The conclusion of this study are:
Virtual reality was beneficial to students’ learning achievement but got little impact on learning motivation, and the differences did not reach statistical significance. The difference in intrinsic cognitive load reached a significant level(p =.006), while the difference in germane cognitive load did not reach statistical significance.
第三語言摘要
論文目次
目次
第一章	緒論	1
第一節	研究背景與動機	1
第二節 研究目的與問題	3
第三節 研究範圍與限制	4
第四節 名詞解釋	5
第二章	文獻探討	7
第一節 虛擬實境技術	7
第二節 認知負荷	20
第三節 性別與學習動機	34
第三章	研究方法	38
第一節	研究對象	38
第二節 研究架構	38
第三節 研究工具	40
第四節 實驗流程	53
第四章	研究結果	56
第一節	學習成效	56
第二節	學習動機	61
第三節	不同類型虛擬實境的認知負荷	63
第四節	性別與認知負荷	64
第五章	研究結論與建議	67
第一節	結論	67
第二節 研究建議	69
參考文獻	72
附錄一 自然科學習動機量表	79
附錄二 認知負荷量表	80

參考文獻
王尊信 & 洪連輝(2011)。物理教育(Physics education)。2011年1月4日,取自https://highscope.ch.ntu.edu.tw/wordpress/?p=18994
余民寧, 翁雅芸, & 張靜軒. (2018). 數理科學的學習動機有性別差異嗎? 一個來自後設分析的證據. Contemporary Educational Research Quarterly, 23(1).
兒童福利聯盟(2017):《2017年台灣學童學習狀況調查報告》。取自https://www.children.org.tw/research/detail/71/1020
周惠柔 & 林弘昌. (2018). 應用虛擬實境與輔助學習軟體於高中橋樑結構設計概念之學習成效. 科技與人力教育季刊, 4(4), 34–66.
周惠柔, & 林弘昌. (2018). 應用虛擬實境技術與 6E 教學模式於高中生活科技課程之結構教學單元設計. 科技與人力教育季刊, 4(3), 67-89.
林志勇 (Ed.). (2006). 認識虛擬實境. 全華科技圖書.
林祐晟. (2018). 虛擬實境應用於自然科實驗之研究. 淡江大學教育科技學系碩士班學位論文, 1-70.
林語恩. (2018). 探究與實作課程─[螺旋結構繞射] 設計與研究. 臺灣師範大學物理學系學位論文, 1-117.
洪梅芳. (2017). 融入心智圖教學對國中學生自然科學習成效的影響. 淡江大學課程與教學研究所碩士在職專班學位論文, 1-118.
夏崇舜, & 楊育芳. (2009). 多媒體教學在外語學習上的應用: 以虛擬實境軟體為例. 明新學報, 35(1), 157-167.
翁鴻仁. (2018). 探究虛擬實境中視覺認知風格對臨場感與科學感知學習的影響. 淡江大學教育領導與科技管理博士班學位論文, 1-148.
高慧君, 王一哲, 石明豐, & 賴錦緣. (2019). VPhysics 跨領域課程設計. 物理教育學刊, 20(1), 14-25.
國家教育研究院(2017)。106年6月第四版本十二年國民基本教育課程綱要自然科學領域課程手冊(初稿)。
張春興. (2001). 教育心理學 (修訂版). 臺北市: 東華.
教育部(2014)。十二年國民基本教育課程綱要總綱。臺灣:教育部。
教育部(2016)。資訊教育總藍圖。臺灣:教育部
許宜婷. (2015). 科技教育教學內容之探討. 科技與人力教育季刊, 2(2), 16-29.
許瓘樸. (2021). 虛擬實境對國中生理化學習成效影響之研究-以 [透鏡成像] 課程為例.
郭胤呈. (2020). 沉浸式虛擬實境數位遊戲式教材對國中生學習動機之影響: 以木尺實驗為例. 淡江大學教育科技學系碩士班學位論文, 1-98.
郭書賓. (2020). 3D 虛擬實驗對國中生理化學習成效與學習動機影響之研究-以電路學單元為例. 淡江大學教育科技學系數位學習碩士在職專班學位論文, 1-72.
陳又菁. (2020). 導入頭戴式虛擬實境於學習成效, 心流體驗與認知負荷之探究: 以昆蟲課程為例. 數位學習科技期刊, 12(3), 1-23.
陳冠宇. (2012). 認知負載, 使用意願與學習成效對不同介面之研究-以 [人體器官教學] 為例. 臺中科技大學資訊工程系碩士班學位論文, 1-129.
陳雅婷. (2013). 以視覺分離, 對應與提示元素在國中英語數位教材設計之研究-以數字讀法為例. 交通大學理學院科技與數位學習學程學位論文, 1-114.
彭佳宜(2014年,9月)。認知負荷理論運用於多媒體教學之啟示。國家教育研究院電子報,96。2014年9月,取自https://epaper.naer.edu.tw/edm.php?grp_no=4&edm_no=96&content_no=2330
黃怡仁(2007)。國中學生數學科學習動機與學習策略之初探研究-以台北縣
樹林市地區學校為例(未出版之碩士論文)。國立交通大學,新竹市。
葉淑瑜(2002)。不同性別國中生的理化學習動機、學習方法與其學業成就關係之探討〔碩士論文,國立臺灣師範大學〕。
褚德三. (2005)。台灣物理教育的回顧。2005年6月。台灣物理協會雙月刊27卷三期
鄭孟芳, & 林素華. (2010). 國小高年級自然科學習風格, 學習動機與學業成就相關研究. 生物科學, 52(2), 39-56.
黎瓊麗, 林玫妙,& 林怡倩.(2007). 性別與英語學習動機之相關研究─以屏東縣國小學童為例. [美和學報] 26卷1期 
蘇國章. (2011). 應用認知負荷理論於資訊融入教學多媒體設計之分析-以自然與生活科技領域” 電子教科書” 為例. 科技教育的再思維, 44.
Albus, P., Vogt, A., & Seufert, T. (2021). Signaling in virtual reality influences learning outcome and cognitive load. Computers & Education, 166, 104154.
Burdea, G., & Coiffet, P. (2003). Virtual reality technology.
Cecil, J., Ramanathan, P., & Mwavita, M. (2013, October). Virtual Learning Environments in engineering and STEM education. In 2013 IEEE Frontiers in Education Conference (FIE) (pp. 502-507). IEEE.
Dewey, J. (1903). Democracy in education. The elementary school teacher , 4(4), 193-204.
Frederiksen, J. G., Sørensen, S. M. D., Konge, L., Svendsen, M. B. S., Nobel-Jørgensen,M., Bjerrum, F., & Andersen, S. A. W. (2019). Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surgical Endoscopy, 34(3), 1244-1252. doi:10.1007/s00464-019-06887-8
Galy, E., Paxion, J., & Berthelon, C. (2018). Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: an example with driving. Ergonomics, 61(4), 517-527.
Georgiou, J., Dimitropoulos, K., & Manitsaris, A. (2007). A virtual reality laboratory  for distance education in chemistry. International Journal of Social Sciences, 2(1), 34-41.
Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32(1), 33-58.
Haluck, R. S., & Krummel, T. M. (2000). Computers and virtual reality for surgical  education in the 21st century. Archives of surgery, 135(7), 786-792.
Hart, S. G. (2006, October). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, No. 9, pp. 904-908). Sage CA: Los Angeles, CA: Sage publications.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). North-Holland.
Herndon, J. N. (1987). Learner interests, achievement, and continuing motivation in instruction. Journal of Instructional Development, 10(3), 11.
Holley, C. D., & Dansereau, D. F. (Eds.). (2014). Spatial learning strategies: Techniques, applications, and related issues. Academic Press.
Huang, C. L., Luo, Y. F., Yang, S. C., Lu, C. M., & Chen, A. S. (2020). Influence of students’ learning style, sense of presence, and cognitive load on learning outcomes in an immersive virtual reality learning environment. Journal of Educational Computing Research, 58(3), 596-615.
Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529.
Jerald, J. (2015). The VR book: Human-centered design for virtual reality. Morgan &  Claypool.
Jex, S. M. (1998). Stress and job performance: Theory, research, and implications for managerial practice. Sage Publications Ltd.
Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in psychology, 8, 1997.
Krueger, M.K.(1991) .Artificial Reality II; Addison-Wesley Professional: Boston, MA, USA.
Lanier, J.(1985) The Rise and Fall and Rise of Virtual Reality.
Lumsden, L. S. (1994). Student motivation to learn.
Mazur, L. M., Mosaly, P. R., Jackson, M., Chang, S. X., Burkhardt, K. D., Adams, R. D., ... & Marks, L. B. (2012). Quantitative assessment of workload and stressors in clinical radiation oncology. International Journal of Radiation Oncology* Biology* Physics, 83(5), e571-e576.
Moro, C., Štromberga, Z., Raikos, A., & Stirling, A. (2017). The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anatomical sciences education, 10(6), 549-559.
O’Connor, M., Stowe, J., Potocnik, J., Giannotti, N., Murphy, S., & Rainford, L. (2021). 3D virtual reality simulation in radiography education: The students’ experience. Radiography, 27(1), 208–214.
Paas, F. G., & Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational psychology review, 6(4), 351-371.
Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785-797. doi:10.1037/edu0000241
Passig, D., Tzuriel, D., & Eshel-Kedmi, G. (2016). Improving children's cognitive modifiability by dynamic assessment in 3D Immersive Virtual Reality environments. Computers & Education, 95, 296-308.
Passig, D., Tzuriel, D., & Kedmi, G. E. (2015). Improving children’s cognitive modifiability through mediated learning and dynamic assessment within 3D immersive virtual reality environment. KEYCIT 2014, 235.
Pletz, C., & Zinn, B. (2020). Evaluation of an immersive virtual learning environment for operator training in mechanical and plant engineering using video analysis. British Journal of Educational Technology, 51(6), 2159-2179.
Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309-327.
Pouliquen-Lardy, L., Milleville-Pennel, I., Guillaume, F., & Mars, F. (2016). Remote collaboration in virtual reality: asymmetrical effects of task distribution on spatial processing and mental workload. Virtual Reality, 20(4), 213-220.
Qian, J., Ma, Y., Pan, Z., & Yang, X. (2020). Effects of Virtual-real fusion on immersion, presence, and learning performance in laboratory education. Virtual Reality & Intelligent Hardware, 2(6), 569-584.
Robert E. Slavin(2013). 教育心理學:理論與實務.(張文哲譯:3版).台灣培生。(原版出版於2012)
Sadideen, H., Hamaoui, K., Saadeddin, M., & Kneebone, R. (2012). Simulators and the simulation environment: getting the balance right in simulation-based surgical education. International Journal of Surgery, 10(9), 458-462.
Schrader, C., & Bastiaens, T. J. (2012). The influence of virtual presence: Effects on experienced cognitive load and learning outcomes in educational computer games. Computers in Human Behavior, 28(2), 648-658.
Shin, D., & Park, S. (2019). 3D learning spaces and activities fostering users’ learning, acceptance, and creativity. Journal of Computing in Higher Education, 31(1), 210-228.
Srimadhaven, T., AV, C. J., Harshith, N., & Priyaadharshini, M. (2020). Learning analytics: Virtual reality for programming course in higher education. Procedia Computer Science, 172, 433-437.
Steed, A., Pan, Y., Zisch, F., & Steptoe, W. (2016, March). The impact of a self-avatar on cognitive load in immersive virtual reality. In 2016 IEEE virtual reality (VR) (pp. 67-76). IEEE.
Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of communication, 42(4), 73-93.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
Vesga, J. B., Xu, X., & He, H. (2021, March). The Effects of Cognitive Load on Engagement in a Virtual Reality Learning Environment. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR) (pp. 645-652). IEEE.
Virvou, M., & Katsionis, G. (2008). On the usability and likeability of virtual reality games for education: The case of VR-ENGAGE. Computers & Education, 50(1), 154-178.
Weibel, D., & Wissmath, B. (2011). Immersion in computer games: The role of spatial presence and flow. International Journal of Computer Games Technology, 2011(1), 282345.
Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human factors, 35(2), 263-281.
Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The factor structure of the presence questionnaire. Presence: Teleoperators & Virtual Environments, 14(3), 298-312.
Yiyuan, Z., Tangwen, Y., Dayong, D., & Shan, F. (2011). Using NASA-TLX to evaluate the flight deck design in Design Phase of Aircraft. Procedia Engineering, 17, 77-83.
Yoon, S. Y., Choi, Y. J., & Oh, H. (2015). User attributes in processing 3D VR-enabled showroom: Gender, visual cognitive styles, and the sense of presence. International Journal of Human-Computer Studies, 82, 1-10.
論文全文使用權限
國家圖書館
不同意無償授權國家圖書館
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
不同意授權予資料庫廠商
校外書目立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信