§ 瀏覽學位論文書目資料
系統識別號 U0002-0108202319443200
DOI 10.6846/tku202300526
論文名稱(中文) 應用平行兩階段動態網路DEA模型評估台灣金融控股公司經營與管理效率
論文名稱(英文) Application of the Parallel Two-stage Dynamic Network Data Envelopment Analysis Model for Evaluating Operational and Managerial Efficiency of Financial Holding Companies in Taiwan
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 財務金融學系博士班
系所名稱(英文) Department of Banking and Finance
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 111
學期 2
出版年 112
研究生(中文) 鄭富月
研究生(英文) Fu-Yueh Cheng
學號 807530042
學位類別 博士
語言別 英文
第二語言別
口試日期 2023-07-08
論文頁數 117頁
口試委員 口試委員 - 林忠機(cglin@scu.edu.tw)
口試委員 - 蕭榮烈(jhsiao@mail.ntpu.edu.tw)
口試委員 - 洪瑞成(hung660804@gmail.com)
口試委員 - 涂登才(tttu@gm.ntpu.edu.tw)
口試委員 - 王譯賢(wyx12@ulive.pccu.edu.tw)
口試委員 - 鄭東光(ctk@mail.tku.edu.tw)
口試委員 - 邱建良(100730@mail.tku.edu.tw)
指導教授 - 邱建良(100730@mail.tku.edu.tw)
共同指導教授 - 黃健銘(133803@mail.tku.edu.tw)
關鍵字(中) 金融體系
並行兩階段動態網絡DEA模型
整體效率值
總要素生產率
公司治理
關鍵字(英) Financial system
Parallel two-stage dynamic network DEA model
Overall efficiency value
Total factor productivity
Corporate governance
第三語言關鍵字
學科別分類
中文摘要
論文提要內容:

台灣金融控股公司的運營效率對確保穩定的金融體系和促進整體經濟發展至關重要。動態網絡數據包絡分析(以下簡稱DNDEA)模型已廣泛用於評估金融機構的表現。本研究採用並行兩階段DNDEA模型,評估2017年至2022年間台灣金融控股公司的運營、管理效率和市場能力。通過確定表現優秀的公司並提供有價值的見解來增強效率,這項研究有助於實證研究台灣金融控股公司的運營管理效率和市場能力,為相關利益相關者的決策和政策制定提供有價值的參考。
本研究利用公開的台灣金融控股公司的財務指標和比率來評估它們在運營階段(營業費用、營業收入)、管理階段(資本負債比率、信用違約率、股東權益報酬率)和市場能力階段(長期投資、市值、每股收益)的表現。採用動態網絡分析方法來探索運營效率、管理效果和市場能力的趨勢。
研究結果顯示,在六年的研究期間內,有五家金融控股公司的運營效率指標低於1,顯示需要改善運營效率。在管理階段,有四家公司在某些年份達到1的效率得分,而其他公司的平均值低於1,表明有提升管理效率的空間。此外,六家金融控股公司的市場能力效率平均值低於1,顯示需要加強市場能力。儘管台灣的金融控股公司在運營效率方面有所改善,但仍需要進一步提高。建議包括加強企業治理和風險管理以提高內部管理效率,並從投資者的角度關注現金流量監控。此外,提高信息透明度,包括收入更新和未來增長前景,對於政府利益相關者至關重要。
Ⅲ

根據實證結果,得出以下發現: (1)在台灣的16家金融控股公司中,整體效率得分為0.6031。管理階段的效率超過運營階段的效率,而市場能力階段的效率表明管理階段是影響整體效率的重要因素。(2)總要素生產率(TFP)變動(滾動基期)的評估顯示,2017年至2022年的TFP變動為1.3109。管理階段的生產率變動高於運營階段的生產率變動。第二階段的市場能力自2017年至2022年有明顯改善。根據波士頓(BCG)矩陣分析,有七家公司表現出良好的整體效率和TFP表現,但有四家大型公司和三家分割公司需要提高其運營效率。此外,還有兩家公司需要改善運營、管理和市場能力。
這些研究結果和建議有助於提高台灣金融控股公司的整體效率和效能,為相關利益相關者的決策和政策制定提供有價值的見解。這項研究有望在確保台灣金融體系穩定和促進可持續經濟發展方面發揮重要作用。



英文摘要
Abstract:

The operational efficiency of Taiwan's financial holding companies is crucial for ensuring a stable financial system and promoting overall economic development. The dynamic network data envelopment analysis (The following is abbreviated as DNDEA.) model has been widely used to assess the performance of financial institutions. This study adopts the parallel two-stage DNDEA model to evaluate the operational, managerial efficiency, and market capabilities of Taiwan's financial holding companies from 2017 to 2022. By identifying top-performing companies and providing valuable insights to enhance efficiency, this research contributes to empirical studies on the operational management efficiency and market capabilities of Taiwan's financial holding companies, offering valuable reference for relevant stakeholders in decision-making and policy formulation.
In this study, publicly available financial indicators and ratios of Taiwan's financial holding companies are utilized to evaluate their performance in the operational stage (operating expenses,
Ⅴ
operating income), the management stage (debt-to-equity ratio, credit default ratio, return on
equity), and the market capabilities stage (long-term investments, market value, earnings per share). The dynamic network analysis method is employed to explore trends in operational efficiency, managerial effectiveness, and market capabilities.
The findings reveal that five financial holding companies demonstrated operational efficiency data below 1 during the six-year study period, suggesting the need for improvements in operational efficiency. In the management stage, four companies achieved an efficiency score of 1 in some years, while the average value of others remained below 1, indicating scope for enhancing managerial efficiency. Additionally, the average market capabilities efficiency of six financial holding companies was below 1, signifying the need to strengthen market capabilities. Although Taiwan's financial holding companies have shown improvement in operational efficiency, further enhancements are warranted. Recommendations include reinforcing corporate governance and risk management to improve internal management efficiency and focusing on cash flow monitoring from an investor perspective. Moreover, increasing information transparency, including revenue updates and future growth prospects, is essential for government stakeholders.

Based on empirical results, the following findings are observed:
(1) Among 16 financial holding companies in Taiwan, the overall efficiency score is 0.6031. The managerial stage efficiency exceeds the operational stage efficiency, and the market capability stage efficiency indicates that the managerial stage is a significant factor influencing overall efficiency.(2) The assessment of Total Factor Productivity (TFP) variation (rolling base period) shows that the TFP variation from 2017 to 2022 is 1.3109. The managerial stage productivity variation is higher than the operational stage productivity variation. The second-stage market capability demonstrates a noticeable improvement since 2017 to 2022.
Based on BCG matrix analysis, seven companies exhibit good overall efficiency and TFP performance, but four large-scale companies and three segmented companies need to enhance their operational efficiency. Additionally, two companies require improvement in operational, managerial, and market capabilities.
VI

The research findings and recommendations are instrumental in enhancing the overall efficiency and effectiveness of Taiwan's financial holding companies, providing valuable insights for decision-making and policy formulation for relevant stakeholders. This study is expected to play a significant role in ensuring the stability of Taiwan's financial system and promoting sustainable economic development.


第三語言摘要
論文目次
Table of Contents
Letter of thanks..........................................................................................I
Abstract…………………………………………………………………..………... Ⅲ
Table of Contents…………………………………………………..……………VIII
List of Figures……………………………………………….…………………….. X
List of Tables…………………………………………………..…….…XII
Chapter 1: Introduction ..............................................................................1
Section1: Research Background...........................................................................1
Section2: Research Motivation............................................................................2
Section3: Research Methodology.........................................................................5
Section4: Research Objectives.............................................................................7
Section5: Scope of the Study..............................................................................10
Section6: The scope of this study encompasses.................................................11
Chapter 2: Literature Review ..............................................................................12
     Section1: Regarding the application of DEA…………………………………..12
    Section2: Regarding the operational management efficiency and corporate governance of financial institutions…………………………………………….19
Chapter 3: Research Methodology......................................................................24
Section1: Data Envelopment Analysis Data Envelopment Analysis….............24
Section2: Network DEA Model Theory..................................................................38
Section3: Dynamic Network Data Envelopment Analysis Models.…………...44
Section4: Productivity Index Model Theory..........................................................53
Chapter 4: Empirical Results and Analysis……………………....…..57
Section1: Data Sources, Model, and Variable Explanations..............................57
Section2: Empirical Conclusion Analysis.…………………………….............62
Section3: Empirical Results of Malmquist Index .............................................72
Section4: Boston Consulting Group……………………………………………….91
Chapter5: Conclusion and Recommendations..........................................96
Section1: Research Findings..............................................................................96
Section2:. Research Recommendations...........................................................101
Section3: Summary…………………………………………...……...……....102
References.............................................................................................................104

Appendix 1: Abbreviations and Stock Ticker Symbols of Financial Holding Companies ...............................................................................117
List of Figures

Figure 3-1 Technical efficiency and allocation to efficiency (input- oriented)………28

figure 3-2 illustrates the relationship between technical efficiency and allocative efficiency (output-oriented)………………………………………….…………….…30

Figure 3-3 Measurement of technical efficiency and production scale in input-oriented and output-oriented approaches………………………………………………………31

Figure 3-4: illustrates the fundamental model of Network DEA………...……………40

Figure 3-5: Separable Model of Network DEA…………………………………....…42

Figure 3-6: illustrates the vertical integration model of Network DEA…...…………44

Figure 3-7: Dynamic DEA Model ……………….…………………….…………….47

Figure 4-1: Research Method Variables and Model……………….…...……….……60

Figure 4-2: BCG Matrix Diagram………………………………….……...………....94

Figure 5-1: BCG matrix chart of average overall efficiency and total factor productivity (rolling base period) from 2017 to 2022………………………………….……….…100
List of Tables

Table1-1: List of market value of financial holding companies……………………..10

Table 4-1: Definitions of Input and Output Variables……………………………………………….61

Table 4-2: Ranking Table of Operational Efficiency for Each DMU from 2017 to 2022
………………………………………………………..………………………………62

Table 4-3: Ranking Table of Management Efficiency for Each DMU from 2017 to 2022
……………………………………………………………………………………..…65

Table 4-4: Market Capability Ranking of Each DMU from 2017 to 2022……...……68

Table 4-5: Ranking of Overall Efficiency for Taiwanese Financial Holding Companies from 2017 to 2022. …………………………………………………...………………70

Table 4-6: Ranking of Dynamic Total Factor Productivity Change (Malmquist Index Efficiency) for Taiwan Financial Holding Companies from 2017 to 2022……………73
Stage1: Operational capability.

Table 4-7: Efficiency Ranking of Dynamic Total Factor Productivity (Malmquist Index) of Taiwan Financial Holding Companies from 2017 to 2022.…………………..……78
參考文獻
REFERENCES 

Adebisi, J. F., & Matthew, O. B. (2015). The Impact of Non-Performing Loans on Firm Profitability: A Focus on the Nigerian Banking Industry. American Research Journal of Business and Management, 1(4), 1-7. \ https://www.arjonline.org/papers/arjbm/v1-i4/1.pdf
Ahmad, F., & Bashir, T. (2013). Explanatory Power of Bank Specific Variables as Determinants of Non-Performing loans: Evidence from 44Pakistan Banking Sector. World Applied Sciences Journal, 22(9), 1220-1231. https://www.idosi.org/wasj/wasj22(9)13/4.pdf
Alessi, L., Bruno, B., Carletti, E., Neugebauer, K., & Wolfskeil, I. (2021). Cover your assets: non-performing loans and coverage ratios in Europe. Economic Policy, 36(108), 685-733. 
Cover your Assets: Non-Performing Loans and Coverage Ratios in Europe
Alnabulsi, K., Kozarević, E., & Hakimi, A. (2022). Assessing the Determinants of Non-Performing Loans Under Financial Crisis and Health Crisis: Evidence from the MENA Banks. Cogent Economics & Finance, 10(1), 2124665.
https://www.tandfonline.com/doi/pdf/10.1080/23322039.2022.2124665
AL-Shatnawi, H. M., Hamawandy, N. M., Mahammad Sharif, R. J., & Al-Kake, F. 
(2021). The Role of the Size and Growth Rate of the Bank in Determining the Effect of Financial Leverage on the Profitability of Jordanian Commercial Banks. Journal of Contemporary Issues in Business and Government, 27(1), 1962-1978.
https://www.cibgp.com/article_8428_b14eab41971fe8a37dd1bcc4a8236269.pdf

Amirteimoori, A. (2006). Data envelopment analysis in dynamic framework. Applied 
and computation, 181(1), 21-28. 
https://www.sciencedirect.com/getaccess/pii/S0096300306000622/purchase
Anita, S. S., Tasnova, N., & Nawar, N.(2022). Are Non-performing Loans Sensitive to Macroeconomic Determinants? Empirical Evidence from Banking Sector of SAARC Countries. Future Business Journal, 8(1), 7.
https://ideas.repec.org/a/spr/futbus/v8y2022i1d10.1186_s43093-022-00117-9.html

Anastasiou, D. (2023). Management and Resolution methods of Non-performing loans: A Review of the Literature. Crises and Uncertainty in the Economy, 187-201.
 Management and Resolution methods of Non-performing loans: A Review of the Literature
Ari, A., Chen, S., & Ratnovski, L. (2020). The Dynamics of Non-Performing Loans During Banking Crises: A New Database.
The Dynamics of Non-Performing Loans During Banking Crises: A New Database 
Ari, A., Chen, S., & Ratnovski, L. (2021). The Dynamics of Non-Performing Loans During Banking Crises: A New Database with Post-COVID-19 Implications. Journal of Banking & Finance, 133, 106140.
https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2395~834e0e7137.en.pdf
Atoi, N. V. (2018). Non-Performing Loan and its Effects on Banking Stability: Evidence from National and International licensed Banks in Nigeria. CBN Journal of Applied Statistics, 9(2), 43-74.
https://www.cbn.gov.ng/out/2019/std/pages%2043%20-%2074_a382_atoi_d.pdf
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092. 
https://pubsonline.informs.org/doi/epdf/10.1287/mnsc.30.9.1078
Barakat, A. (2014). The Impact of Financial Structure, Financial Leverage and Profitability on Industrial Companies Shares Value (Applied Study on a Sample of Saudi Industrial Companies). Research Journal of Finance and Accounting, 5(1), 55-66. https://www.iiste.org/Journals/index.php/RJFA/article/view/10454
Bhattarai, Y. R. (2016). Effect of Non-Performing Loan on the Profitability of Commercial Banks in Nepal. Prestige International Journal of Management and Research, 10(2), 1-9. Bhattarai, Y. R. (2016). Effect of Non- Performing Loan on the Profitability of Commercial Banks in Nepal. Prestige International Journal of Management and Research, 10(2), 1-9.
Effect of Non-Performing Loan on the Profitability of Commercial Banks in Nepal
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European journal of operational research, 2(6), 429-444. 
https://personal.utdallas.edu/~ryoung/phdseminar/CCR1978.pdf
Chen, Y., & Zhu, J. (2004). Measuring information technology's indirect impact on firm performance. Information Technology and Management, 5, 9-22. 
http://www.deafrontier.net/papers/ITMindirect.pdf
Cucinelli, D. (2015). The Impact of Non-Performing Loans on Bank Lending Behavior: Evidence from the Italian banking sector. Eurasian Journal of Business and Economics, 8(16), 59-71.
https://www.ejbe.org/EJBE2015Vol08No16p059CUCINELLI.pdf
Dao, B.(2020). Bank capital adequacy ratio and bank performance in Vietnam: A simultaneous equations framework. Journal of Asian Finance, Economics and Business,7(6),039046.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3979493
Danu Ade Setiawan (2018) The effect of financial leverage on debt repayment capacity: evidence from listed shipping company in Indonesia, Hasanuddin Economics and Business Review 2(2):113, DOI:10.26487/hebr.v2i2.1513
https://www.researchgate.net/publication/332578631_THE_EFFECT_OF_FINANCIAL_LEVERAGE_ON_DEBT_REPAYMENT_CAPACITY_EVIDENCE_FROM_LISTED_SHIPPING_COMPANY_IN_INDONESIA
Demirguc-Kunt and Detragiache (2005) Nonperforming Loans and Financial Stability
IMF eLIBRARY
https://www.elibrary.imf.org/display/book/9780199683796/ch007.xml?tabs=abstract

Dimitrios, A. (2017). Management and Resolution Methods of Non-Performing Loans: A Review of Literature.Social Science Research Network.
 Management and        Resolution methods of Non-performing loans
Ekanayake, E. M. N. N., & Azeez, A. A. (2015). Determinants of Non-Performing Loans in Licensed Commercial Banks: Evidence from Sri Lanka. Asian Economic and Financial Review, 5(6), 868-882.
https://archive.aessweb.com/index.php/5002/article/view/1409/2031

Erdas, M. L., & Ezanoglu, Z. (2022). How do Bank-Specific Factors Impact Non- Performing Loans: Evidence from G20 countries. Journal of Central Banking   
Theory and Practice, 11(2), 97-122.
https://sciendo.com/article/10.2478/jcbtp-2022-0015?tab=pdf-preview

Fakhrunnas, F., Nugrohowati, R. N. I., Haron, R., & Anto, M. B. H. (2022). The Determinants of Non-Performing Loans in the Indonesian Banking Industry: An Asymmetric Approach Before and During the Pandemic Crisis. SAGE Open, 12(2), 21582440221102421.
https://journals.sagepub.com/doi/pdf/10.1177/21582440221102421
Färe, R., & Grosskopf, S. (2009). A comment on dynamic DEA. Applied Mathematics and Computation, 213(1), 275-276.  https://www.sciencedirect.com/science/article/abs/pii/S009630030900229X
Färe, R., S. Grosskopf, C.K. Lovell, and C. Pasurka. 1989. "Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach." The review of Economics and Statistics:90-98
Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach.
Färe R, Grosskopf S, Kokkelenberg EC (1989). Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach. Intl. Econ. Rev. 30(3): 655-666. 
https://www.jstor.org/stable/2526781
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the royal statistical society: series A (General), 120(3), 253-290. https://rss.onlinelibrary.wiley.com/doi/epdf/10.2307/2343100
Färe, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics letters, 50(1), 65-70 https://www.sciencedirect.com/science/article/abs/pii/0165176595007296
Färe, R., Grosskopf, S., & Whittaker, G. (2007). Network dea. Modeling data irregularities and structural complexities in data envelopment analysis, 209-240.  
https://link.springer.com/chapter/10.1007/978-0-387-71607-7_12
Fofack, H., & Fofack, H. L. (2005). Nonperforming Loans in Sub-Saharan Africa: Causal Analysis and Macroeconomic Implications (Vol. 3769). World Bank Publications. https://openknowledge.worldbank.org/server/api/core/bitstreams/d6ec9ab1-6ba3-5569-a4f8-cf0380302158/content
Gatsi, J. G., Gadzo, S. G., & Oduro, R. (2016). Degree of Leverage and Risk Adjusted Performance of Listed Financial Institutions in Ghana. Journal of Business and Management, 18(1), 44-50.
            Degree of Leverage and Risk Adjusted Performance of Listed Financial Institutions in Ghana. Journal of Business and Management
Gazi, M. A. I., Rahaman, A., Waliullah, S. S. A., Ali, M. J., & Mamoon, Z. R. (2021). Financial Performance of Converted Commercial Banks From Non-Banking Financial Institutions: Evidence from Bangladesh. The Journal of Asian Finance, Economics and Business, 8(2), 923-931. https://koreascience.kr/article/JAKO202104142257636.pdf
Ghosh, A. (2015). Banking-Industry Specific and Regional Economic Determinants of Non-Performing Loans: Evidence from US states. Journal of financial stability, 20, 93-104. https://www.sciencedirect.com/science/article/abs/pii/S1572308915000881
Ha, V. D. (2023). Reciprocity Between Financial Leverage and Productivity of Cooperative Credit Institutions: Evidence from Vietnam. International Journal of Economic Policy in Emerging Economies, 17(1), 64-87. https://www.sciedu.ca/journal/index.php/rwe/article/view/16952/10748
Hermuningsih, S., Sari, P. P., & Rahmawati, A. D. (2020). The Influence of Third-Party Funds, Non-Performing Loans (NPL) on Credit Distribution with Profitability as Intervening Variable in Commercial Banks. International Journal of Economics, Business and Accounting Research (IJEBAR), 4(02).
https://pdfs.semanticscholar.org/f2fd/0ec9acadd3dd49406543601915b2570d0eb2.pdf
Hosen, M., Broni, M. Y., & Uddin, M. N. (2020). What Bank Specific and Macroeconomic Elements Influence Non- Performing Loans in Bangladesh? Evidence from Conventional and Islamic Banks. Green Finance, 2(2), 212-226.
http://www.aimspress.com/article/id/5182
Huang et al. (2008) The Relationship between Corporate Governance and Default Risk in Taiwan's Financial Institution. Journal of Accounting and Corporate Governance, Volume 5, Issue 1 (June 1, 2008), pp. 33-53."
https://www.airitilibrary.com/Publication/alPublicationJournal?PublicationID=18105149
Hue, N. T. M. (2015). Non-performing loans: Affecting Factor for the Sustainability of Vietnam Commercial Banks.
Journal of Economics and Development, 17(1), 93-106. https://jed.neu.edu.vn/Uploads/JED%20Issue/2015/Vol%2017%20No1/Article%206_JED_Vol%2017_Number%201.pdf
Ilyukhin, E. (2015). The impact of financial leverage on firm performance: Evidence from Russia. Корпоративные финансы, 9(2), 24-36. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2589013
Jolevski, L. (2017). Non-Performing Loans and Profitability Indicators: The Case of the Republic of Macednia.
Journal оf Contemporary Economic аnd Business Issues, 4(2), 5-20.
https://www.econstor.eu/bitstream/10419/193475/1/spisanie-vol-4-br-2-trud-1.pdf
Kamel, M. A., Mousa, M. E. S., & Hamdy, R. M. (2021). Financial efficiency of commercial banks listed in Egyptian stock exchange using data envelopment analysis. International Journal of Productivity and Performance Management, 71(8), 3683-3703. https://www.emerald.com/insight/content/doi/10.1108/IJPPM-10-2020-0531/full/html
Khafid, M., & Anisykurlillah, I. (2020). Investigating the Determinants of Non-Performing Loan: Loan Monitoring as a Moderating variable. Kne social sciences, 126-136.
https://knepublishing.com/index.php/KnE-Social/article/view/6592
Khan, M. A., Siddique, A., & Sarwar, Z. (2020). Determinants of Non-Performing Loans in the Banking Sector in Developing State. Asian Journal of Accounting Research,5(1),135-145.
https://pdfs.semanticscholar.org/57fc/35c397efa90c534b82a12b2b0c472ca23d86.pdf
Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European journal of operational research, 185(1), 418-429. https://www.sciencedirect.com/science/article/abs/pii/S0377221707000112
Kao, C. (2009). Efficiency decomposition in network data envelopment analysis: A relational model. European journal of operational research, 192(3), 949-962. http://prof.mau.ac.ir/images/Uploaded_files/ms%20mohamadi[4175811].PDF
Klopp, G. A. (1985). The analysis of the efficiency of productive systems with multiple inputs and outputs. University of Illinois at Chicago. https://indigo.uic.edu/articles/thesis/THE_ANALYSIS_OF_THE_EFFICIENCY_OF_PRODUCTIVE_SYSTEMS_WITH_MULTIPLE_INPUTS_AND_OUTPUTS_/10915613/1
Koopmans, T. (1951). Activity analysis of production and allocation. 
            Activity analysis of production and allocation.
Lestari, H. S. (2021). Financial Leverage and Financial Performance of Conventional Banks in Indonesia. Journal of Hunan University Natural Sciences, 48(2).
Li, Y., Chen, Y., Liang, L., & Xie, J. (2012). DEA models for extended two-stage network structures. Omega, 40(5), 611-618. https://www.sciencedirect.com/science/article/pii/S0305048311001721
Liu, Day-Yang, et al. "The Effects of Nonperforming Loans on Dynamic Network Bank Performance." Discrete Dynamics in Nature and Society 2017 (2017) https://downloads.hindawi.com/journals/ddns/2017/9458315.pdf
Liu, J. S., & Lu, W. M. (2010). DEA and ranking with the network-based approach: a case of R&D performance. Omega, 38(6), 453-464. https://www.sciencedirect.com/science/article/pii/S0305048309001005
Louzis, D. P., Vouldis, A. T., & Metaxas, V. L. (2012). Macroeconomic and Bank-Specific Determinants of Non- Performing Loans in Greece: A Comparative Study of Mortgage, Business and Consumer Loan Portfolios. Journal of Banking & Finance, 36(4), 1012-1027. 
Macroeconomic and bank-specific determinants of non-performing loans in Greece: A comparative study of mortgage, business and consumer loan portfolios
Lu, Qingcheng. (2014) applies a two-stage DEA game model to evaluate the performance of the Taiwanese semiconductor industry.
https://ndltd.ncl.edu.tw/cgibin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22102SCU00389003%22.&searchmode=basic
Merhbene, D. E. (2021). The Relationship between Non-Performing Loans, Banking System Stability and Economic Activity: The Case of Tunisia (No. 03-2021). Graduate Institute of International and Development Studies Working Paper. https://bccprogramme.org/wp-content/uploads/2021/04/elbir_d_heidwp03-2021.pdf

Md. Kamal Uddin (2022) Effect of Leverage, Operating Efficiency, Non-Performing Loan, and Capital Adequacy Ratio on Profitability of Commercial Banks in Bangladesh.ISSN:2507-1076, DOI:10.24018
https://doi.org/10.24018/ejbmr.2022.7.3.1463
Morakinyo, A. E., & Sibanda, M. (2016). The Determinants of Non-Performing Loans in the MINT Economies.
Journal of Economics and Behavioral Studies, 8(5 (J)), 39-55. https://ojs.amhinternational.com/index.php/jebs/article/view/1430/1315

Nadham, V., & Nahid, B. (2015). Determinants of Non Performing Loans in Commercial Banks: A Study of NBC Bank Dodoma Tanzania. International Journal of Finance & Banking Studies (2147-4486), 4(1), 70-94. https://core.ac.uk/download/pdf/230937978.pdf
Naili, M., & Lahrichi, Y. (2022). Banks’ Credit Risk, Systematic Determinants, and Specific Factors: Recent Evidence from Emerging Markets. Heliyon, 8(2), e08960. 
Banks’ credit risk, systematic determinants and specific factors: recent evidence from emerging markets
Nemoto, J., & Goto, M. (1999). Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Economics Letters, 64(1), 51-56. https://www.sciencedirect.com/science/article/abs/pii/S0165176599000701
Nemoto, J., & Goto, M. (2003). Measurement of dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities. Journal of Productivity analysis, 19, 191-210.
            Measurement of dynamic efficiency in production
Ozili, P. K. (2022). Bank Non-Performing Loans in the Fintech Era. International Journal of Financial Innovation in Banking, 3(2), 95-11 
            Bank non-performing loans in the Fintech era
Park, J., Shin, M., & Heo, W. (2021). Estimating the Bis Capital Adequacy Ratio for Korean Banks Using Machine learning: Predicting by Variable Selection Using Random Forest Algorithms. Risks, 9(2), 32. https://www.mdpi.com/2227-9091/9/2/32
Park, C. Y., & Shin, K. (2021). COVID-19, Nonperforming Loans, and Cross-Border Bank Lending. Journal of Banking & Finance, 133, 106233. 
COVID-19, nonperforming loans, and cross-border bank lending
Patwary, M. S. H., & Tasneem, N. (2019). Impact of Non-Performing Loan on Profitability of Banks in Bangladesh: A study from 1997 to 2017. Global Journal of Management and Business Research, 19(C1), 13-27. https://globaljournals.org/GJMBR_Volume19/2-Impact-of-Non-Performing-Loan.pdf
Polodoo, V., Seetanah, B., Sannassee, R. V., Seetah, K., & Padachi, K. (2015). An Econometric Analysis Regarding the Path of Non Performing Loans-a Panel Data Analysis from Mauritian Banks and Implications for the Banking Industry. The Journal of Developing Areas, 53-64. https://muse.jhu.edu/pub/51/article/558461/pdf
Ramli, N. A., Mohammed, N. I., Hussin, S. A. S., & Khairi, S. S. M. (2018, July). Investigating the Effect of Non- Performing Loans on Technical Efficiency in Malaysian Banking Sector. In AIP Conference Proceedings (Vol. 1982, No. 1, p. 020008). AIP Publishing LLC. 
Investigating the effect of non-performing loans on technical efficiency in Malaysian banking sector
Raphael, G. (2013). Efficiency of commercial banks in East Africa: A non parametric approach. International Journal of Business and Management, 8(4), 50.  Efficiency of Commercial Banks in East Africa: A Non Parametric Approach
Reuven Glick (2015) Not All NPLs Are Created Equal. Federal Reserve Bank of San Francisco, CA 94120-7702
https://www.frbsf.org/banking/asia-program/pacific-exchange-blog/nonperforming-loan-ratio-asset-quality-measures-in-asia/
Salvi, A., Bussoli, C., Conca, L., & Gigante, M. (2018). Determinants of Non-Performing Loans: Evidence from Europe. International Journal of Business and Management,13(10),230-239. https://pdfs.semanticscholar.org/dad6/d80e9bfdd05493b0079b3bdbb08950bc20cd.pdf
Siddika, A., & Haron, R. (2020). Capital Adequacy Regulation. In Banking and Finance. IntechOpen. https://www.researchgate.net/publication/341989903_Capital_Adequacy_Regulation
Singh, S. K., Basuki, B., & Setiawan, R. (2021). The Effect of Non-Performing Loan on Profitability: Empirical evidence from Nepalese Commercial Banks. The Journal of Asian Finance, Economics and Business, 8(4), 709-716. https://koreascience.kr/article/JAKO202109554061493.pdf
Shepard, R.W. (1970) Theory of Cost and Production Functions, Princeton: Princeton University Press. 
Theory of Cost and Production Functions, Princeton: Princeton University Press
Sueyoshi, T., & Sekitani, K. (2005). Returns to scale in dynamic DEA. European journal of operational research, 161(2),536-544. https://www.researchgate.net/publication/4872097_Returns_to_scale_in_dynamic_DEA
Socol, A., & Danuletiu, A. E. (2013). Analysis of the Romanian Bank’s Performance through ROA and Non- Performing Loans Models. Annales Universitatis Apulensis: Series Oeconomica, 15(2), 594. http://oeconomica.uab.ro/upload/lucrari/1520132/24.pdf
Teshome, E., Debela, K., & Sultan, M. (2018). Determinant of Financial Performance of Commercial Banks in Ethiopia: Special Emphasis on Private Commercial Banks. African Journal of Business Management, 12(1), 1-10. https://app.amanote.com/v4.0.36/research/note-taking?resourceId=e6R5AXQBKQvf0BhiDXxQ 
Tone, K., 2001. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research 130, 498–509. 
Tone, K., 2001. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research 130, 498–509  
Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, 38(3-4), 145-156. https://reader.elsevier.com/reader/sd/pii/S0305048309000449?token=44F4789B28FB809A14DD28257B9C76001062B430D5FD6C97DA6B3EDC1BA3E05DC4BAB70BEC803BB4069EF18F2EAAD7F2&originRegion=us-east-1&originCreation=20230518184301 
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42(1), 124-131 
Dynamic DEA with network structure: A slacks-based measure approach
Toumi, K., Viviani, J. L., & Belkacem, L. (2011). A Comparison of Leverage and Profitability of Islamic and Conventional Banks. Available at SSRN 1836871. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1836871
Tushaj, A., & Sinaj, V. (2020). The Effect of Banking Concentration on Non-Performing Loans: The Case of Albania.International Journal of Economics & Business Administration (IJEBA), 8(2), 433-442. https://ijeba.com/journal/473/download/The+Effect+of+Banking+Concentration+on+Non-Performing+Loans%3A+The+Case+of+Albania.pdf
Uddin, M. K. (2022). Effect of Leverage, Operating Efficiency, Non-Performing Loan, and Capital Adequacy Ratio on Profitability of Commercial Banks in Bangladesh. European Journal of Business and Management Research, 7(3), 289-295
https://www.ejbmr.org/index.php/ejbmr/article/view/1463/810
Uddin, M. K. (2022). The Effect of Non-performing Loan on State-owned Commercial Banks’ Profitability with Operating Efficiency as Mediating Variable. European Journal of Business and Management Research, 7(3), 216-223.
The Effect of Non-performing Loan on State-owned Commercial Banks’ Profitability with Operating Efficiency as Mediating Variable
Yu, M. M., & Lin, E. T. (2008). Efficiency and effectiveness in railway performance using a multi-activity network DEA model. Omega, 36(6), 1005-1017
Efficiency and effectiveness in railway performance using a multi-activity network DEA model     
Zhang, P., Zhang, M., Zhou, Q., & Zaidi, S. A. H. (2022). The Relationship Among Financial Inclusion, Non- Performing Loans, and Economic Growth: Insights from OECD Countries. Frontiers in Psychology, 13.
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.939426/full







論文全文使用權限
國家圖書館
不同意無償授權國家圖書館
校內
校內紙本論文立即公開
電子論文全文不同意授權
校內書目立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信