§ Browsing ETD Metadata
  
System No. U0002-0107201312075700
Title (in Chinese) 以擴散預測智慧型手機需求-以iPhone為例
Title (in English) A Diffusion Forecasting Model with Application to the iPhone Demand
Other Title
Institution 淡江大學
Department (in Chinese) 管理科學學系碩士班
Department (in English) Master's Program, Department of Management Sciences
Other Division
Other Division Name
Other Department/Institution
Academic Year 101
Semester 2
PublicationYear 102
Author's name (in Chinese) 許育豪
Author's name(in English) Yu-Hao Hsu
Student ID 600620453
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2013-06-25
Pagination 59page
Committee Member advisor - Ruey-Chyn Tsaur
co-chair - Peirchyi-Lii
co-chair - Yi-Kuei Lin
Keyword (inChinese) 擴散模型
市場預測
智慧型手機
預測績效
Keyword (in English) diffusion model
market forecasting
smartphone
forecasting performance
Other Keywords
Subject
Abstract (in Chinese)
蘋果2007年發布第一代iPhone就引起消費者搶購,風潮席捲全球,開創了智慧型手機的熱潮。蘋果公司每次在推出新機的時候總是讓消費者引頸期盼,隨著手機技術在軟硬體上不斷的改善與創新,新一代iPhone推出的速度也越來越快、生命週期逐漸的縮短。因此若能對於需求急速增加且生命週期逐漸縮短的產品有效的預測市場需求,則企業能夠減少庫存與生產成本,進而使企業的獲利提升。
為了克服此難題,本研究以Apple iPhone 2009年第三季至2012年第四季共13季,三個世代的iPhone銷售數量為實證數據,並以Bass擴散模型作為預測的基礎架構,在擴散模式中加入iPhone當期價格以及iPhone對消費者的吸引力程度來修正擴散模型,將各代iPhone銷售數據代入模式中,以統計軟體SPSS非線性最小平方法估計出各世代的擴散係數與創新係數。實證分析結果發現擴散模型加入產品價格及產品吸引力修正後在預測方面獲得顯著的預測績效。
Abstract (in English)
The smartphone iPhone is entered the market in 2007 and has been all over the world. With the dramatical developing in the smartphone innovation and continuous improvement, the product life cycle of smartphones becomes shorter than before. Therefore, a good forecasting to the smartphone demand can reduce the inventory cost and production cost for the manufactures. 
In oreder to cope with such problem, we use the iPhone seasonal sales from the third quarter of 2009 to the end of 2012 for illustration by using the Bass diffusion models with the adjustment of price function and attractive character function for the iPhone. The results show that the proposed diffusion model can make a good forecasting performance with the smaller MAPE as well as 14.5%.
Other Abstract
Table of Content (with Page Number)
目錄
第一章 緒論	1
1-1研究背景動機	1
1-2 研究目的	5
1-3 研究假設	6
1-4 研究流程	7
第二章 文獻探討	9
2-1擴散模型基本概念	9
2-2 Bass擴散模型	10
2-3擴散採用者的分類	15
2-4擴散參數估計方式	16
2-5擴散相關研究與修正	19
2-6產品吸引力與品質魅力	26
第三章 研究方法 	29
3-1研究架構 	29
3-2模式的建立	31
3-3最小平方法	35
3-4灰色理論	37
3-5指數平滑法	38
第四章 實證分析	41
4-1擴散參數估計結果	42
4-2模型的預測能力	43
4-3模式敏感度分析	49 
第五章 結論與建議	53
5-1研究結論建議	53
5-2未來研究方向	54
參考文獻	55
附錄	59

 
表目錄
表2-1擴散模型延伸與相關研究	19
表2-2 Bass擴散模式結合行銷變數相關研究	23
表2-3 Bass不合理假設與修正	25
表2-4產品吸引力的四個層面 	27
表3-1 ROC權重表表	32
表3-2 MAPE預測能力評估	40
表4-1 Bass擴散模型參數	43
表4-2 iPhone上市的價格及全球銷售量	43
表4-3 SMART ROC吸引力權重	43 
表4-4 iPhone依上市時間區分世代	44
表4-5原Bass模式預測結果	44
表4-6修正Bass擴散預測結果	46
表4-7 iPhone各代預測銷售結果	48
表4-8 iPhone 3GS擴散係數及市場潛量	49
表4-9 iPhone 3GS預測結果	49
表4-10 iPhone 4擴散係數及市場潛量	50
表4-11 iPhone 4預測結果	50
表4-12 iPhone 4擴散係數及市場潛量 	50
表4-13 iPhone 4S預測結果	51
表4-14 iPhone分代遇測結果結果	51

圖目錄
圖1-1 iPhone全球銷售量	4
圖1-2產品世代交替圖	6
圖1-3研究流程架構圖	8
圖2-1 Bass採用者分類	10
圖2-2 Bass擴散累積採用曲線	13
圖2-3 Bass擴散非累積採用曲線	14
圖2-4 q>p擴散成長率	14
圖2-5 q≤p擴散成長率	14
圖2-6 Roger’s採用者分配  	15
圖2-7 Bass擴散採用者分類 	15
圖2-8產品通路與採用程序 	21
圖3-1研究架構圖	30
圖4-1 iPhone各代各季銷售量	42
圖4-2原Bass模型預測結果  	45
圖4-3修正Bass擴散預測結果  	46
圖4-4原Bass與修正Bass預測結果  	47
圖4-5各方式預測iPhone銷售結果  	48
圖4-6 iPhone 3GS預測曲線 	49
圖4-7 iPhone 4預測曲線 	50
圖4-8 iPhone 4S預測曲線  	51
圖4-9 iPhone分代預測結果	52
References
參考文獻
中文文獻
1.2013年智慧型手機市場佔有率提高至31%,科技產業資訊室,2008/03/24,取自: http://cdnet.stpi.narl.org.tw/techroom.htm
2.吳政達,2004,運用類神經網路估計新產品擴散模式係數之研究,國立成功大學工業與資訊管理學系碩士論文。
3.孫中璽,2003,具網路外部性產品之擴散模型研究,國際東華大學國際企業研究所,碩士論文, 
4.魅力工學研究部彙編,1992,魅力工學,海文堂。

 
外文文獻
1.	Aaker, D. A., & Jacobson, R. (1994). The financial information content of perceived quality. Journal of marketing research, 191-201.
2.	Bass, Frank M. "Comments on “A New Product Growth for Model Consumer Durables The Bass Model”." Management science 50.12 supplement (2004): 1833-1840.
3.	Baxter, M. (1995). Product design: a practical guide to systematic methods of new product development. CRC PressI Llc.
4.	Bhuian, S. N. (1997). Marketing cues and perceived quality: Perceptions of Saudi consumers toward products of the US, Japan, Germany, Italy, UK and France. Journal of Quality management, 2(2), 217-234.
5.	Fourt, L. A., & Woodlock, J. W. (1960). Early prediction of market success for new grocery products. The Journal of Marketing, 31-38.
6.	Gatignon, H., Eliashberg, J., & Robertson, T. S. (1989). Modeling multinational diffusion patterns: An efficient methodology. Marketing Science, 8(3), 231-247.
7.	Holbrook, M. B., & Corfman, K. P. (1985). Quality and value in the consumption experience: Phaedrus rides again. Perceived quality, 31, 31-57.
8.	Horsky, D. (1990). A diffusion model incorporating product benefits, price, income and information. Marketing Science, 9(4), 342-365.
9.	Horsky, D., & Simon, L. S. (1983). Advertising and the diffusion of new products. Marketing Science, 2(1), 1-17.
10.	Jain, D. C., & Rao, R. C. (1990). Effect of price on the demand for durables: Modeling, estimation, and findings. Journal of Business & Economic Statistics,8(2), 163-170.
11.	Jones, J. M., & Ritz, C. J. (1991). Incorporating distribution into new product diffusion models. International Journal of Research in Marketing, 8(2), 91-112.
12.	Kalish, S. (1983). Monopolist pricing with dynamic demand and production cost. Marketing Science, 2(2), 135-159.
13.	Kalish, S. (1985). A new product adoption model with price, advertising, and uncertainty. Management science, 31(12), 1569-1585.
14.	Kalish, S., & Lilien, G. L. (1986). A market entry timing model for new technologies. Management Science, 32(2), 194-205.
15.	Kelly, G. A., & Kelly, G. A. (1955). The psychology of personal 
constructs (Vol.2). Routledge.
16.	Kamakura, W. A., & Ealasubramanian, S. K. (1987). Long‐term forecasting with innovation diffusion models: The impact of replacement purchases. Journal of forecasting, 6(1), 1-19.
17.	Lawrence, K. D., & Lawton, W. H. (1981). Applications of diffusion models: some empirical results. New product forecasting, 529-541.
18.	Mahajan, V., & Peterson, R. A. (1978). Innovation diffusion in a dynamic potential adopter population. Management Science, 24(15), 1589-1597.
19.	Mahajan, V., & Sharma, S. (1986). A simple algebraic estimation procedure for innovation diffusion models of new product acceptance. Technological Forecasting and Social Change, 30(4), 331-345.
20.	Mahajan, V., Muller, E., & Bass, F. M. (1990). New Product Diffusion Models in Marketing: A Review and Directions for Research. The Journal of Marketing,
54(1), 1-26.
21.	Mahajan, V., Muller, E., & Kerin, R. A. (1984). Introduction strategy for new products with positive and negative word-of-mouth. Management Science,30(12), 1389-1404.
22.	Mahajan, V., Muller, E., & Srivastava, R. K. (1990). Determination of adopter categories by using innovation diffusion models. Journal of Marketing Research, 37-50.
23.	Maier, F. H. (1998). New product diffusion models in innovation management—A system dynamics perspective. System Dynamics Review, 14(4), 285-308.
24.	Mansfield, E., & Mansfield, E. (1993). The economics of technical change (Vol.31). Edward Elgar Pub.
25.	Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products.Management science, 33(9), 1069-1086.
26.	Norton, J. A., & Bass, F. M. (1992). Evolution of technological generations: the law of capture. Sloan Management Review, 33(2), 66-77.
27.	Newman, J. W. (1957). New insight, new progress for marketing. Harvard Business Review, 35(6), 95-102.
28.	Parker, P. M. (1992). Price elasticity dynamics over the adoption life cycle.Journal of Marketing Research, 29(3), 358-367.
29.	Robinson, B., & Lakhani, C. (1975). Dynamic price models for new-product planning. Management Science, 21(10), 1113-1122.
30.	Rogers, E. M. (2003). Diffusion of Innovations, 5th ed, New York : Free Pass.
31.	Schmittlein, D. C., & Mahajan, V. (1982). Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Marketing science, 1(1), 57-78.
32.	Sharif, M. N., & Ramanathan, K. (1981). Binomial innovation diffusion models with dynamic potential adopter population. Technological Forecasting and Social Change, 20(1), 63-87.
33.	Simon, H., & Sebastian, K. H. (1987). Diffusion and advertising: the German telephone campaign. Management Science, 33(4), 451-466.
34.	Thomas, R. J. (1985). Estimating market growth for new products: An analogical diffusion model approach. Journal of Product Innovation Management, 2(1), 45-55.
35.	Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. The Journal of Marketing, 2-22.
Terms of Use
Within Campus
I request to embargo my thesis/dissertation for 5 year(s) right after the date I submit my Authorization Approval Form.
Agree to authorize disclosure on campus
Duration for delaying release from 5 years.
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and I donate the fee to my school library as a development fund.
Duration for delaying release from 5 years.
 Top

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email