§ Browsing ETD Metadata
  
System No. U0002-3108201614474100
Title (in Chinese) 新型渦流捕捉顆粒晶片之研製
Title (in English) New Vortex-based Flow Chips to Capture Particles
Other Title
Institution 淡江大學
Department (in Chinese) 機械與機電工程學系碩士班
Department (in English) Department of Mechanical and Electro-Mechanical Engineering
Other Division
Other Division Name
Other Department/Institution
Academic Year 104
Semester 2
PublicationYear 105
Author's name (in Chinese) 邱志軒
Author's name(in English) Jhih-syuan Ciou
Student ID 603370163
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2016-06-14
Pagination 59page
Committee Member advisor - Lung-Jieh Yang
co-chair - Yong-Jiang Jhong
co-chair - Sie-Chen Han
Keyword (inChinese) 生物晶片
蜻蜓翼
渦旋
微流道
Keyword (in English) Biochips
Dragonfly wing
Vortex
Microfluidic
Other Keywords
Subject
Abstract (in Chinese)
本文僅用COSMOL Multiphysics改良了先前新型渦流捕捉顆粒晶片設計,該晶片係將蜻蜓翼與微流道結合在一起,利用蜻蜓翼在流動時會於翅膀皺摺凹陷處產生渦旋之特性,擬於微流道內產生低雷諾數渦旋,進行顆粒之捕捉。
    本文賦予蜻蜓翼結構實際線寬20μm並模擬不同顆粒大小10μm、20μm之效果,且透過SU-8黃光微影製程,搭配聚二甲基矽氧烷PDMS翻模製程,利用RIE使PDMS與載玻片做結合,成功製作出蜻蜓翼結構之微流道晶片,接著進行微球體灌流實驗,發現在3分鐘後,開始有顆粒吸附;6~9分鐘後,有顆粒阻塞蜻蜓翼微流道情形。
    根據實驗結果,本文重新定義蜻蜓翼結構在微流道中具有輔助捕捉顆粒之功能,並進一步嘗試結合於Sollier的癌細胞捕捉晶片中,盼望有利於縮小該晶片流道長度。
Abstract (in English)
COMSOL-Multiphysics is used to improve the design of the new vortex-based flow chips to capture particles. With combining the dragonfly-wing microstructure in the flow channel,this flow chip is expected to generate low Reynolds number vortex inside the corrugated grooves, and to trap particles.
    Not only the particle flow simulation, but also the PDMS flow chips with dragonfly-wing microstructure have been successfully fabricated and tested. The anthor assigned the line width of the dragonfly-wing as 20μm, and the particles sizes as 10 and 20μm. The popular PDMS chip process include the SU-8 photolitnography, PDMS molding, plasma treatment and the glass bonding. The related particle flow feeding experiment reveals that the microbeads begin captured after 3min, and evenmore choke the lower channel undermeath the dragonfly-wing after 6-9min.
   Based on the expenmental observation, the anthor re-define the function of the dragonfly-wing flow channel, and would combine it to work together with Sollier’s tumor cell capture chp. The goal is to reduce the Sollier’s chip size by the vortex-based dragonfly wing herein.
Other Abstract
Table of Content (with Page Number)
目錄 
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………..Ⅱ
目錄……………………………………………………………….…….Ⅲ
圖目錄…………………………………………………………………..Ⅵ
表目錄………………………………………………………….……….Ⅹ
第一章緒論.............................................................................................1
1.1前言…………………………………………………………….1
1.2研究動機.....................................................................................2
1.3文獻回顧.....................................................................................4
1.4研究目的.....................................................................................7
第二章COMSOL Multiphysics..............................................................8
2.1計算流體力學COMSOL Multiphysics.....................................8
2.2模組功能介紹與建立.................................................................9
2.3蜻蜓翼微流道之模擬...............................................................11
2.3.1蜻蜓翼結構之線寬................................................11
2.3.2不同顆粒大小之微流道模擬................................14
第三章蜻蜓翼之微流道製造..............................................................16
3.1光罩設計...................................................................................16
3.2光罩製造...................................................................................17
3.3基本製造技術...........................................................................17
3.3.1晶片清潔................................................................18
3.3.2微影製程................................................................19
3.4蜻蜓翼結構之微流道製程.......................................................23
3.4.1矽晶圓微流道製作................................................23
3.4.2PDMS翻模.............................................................25
3.4.3PDMS清潔步驟.....................................................26
3.4.4RIE氧氣電漿結合..................................................27
3.4.5微流道防漏黏合....................................................29
第四章新型渦流捕捉顆粒晶片之實驗與探討..................................30
4.1動態實驗架設...........................................................................30
4.2微球體動態實驗.......................................................................33
4.3微球體動態實驗探討...............................................................34
第五章結論與未來展望......................................................................50
5.1結論...........................................................................................50
5.2未來展望...................................................................................51
參考文獻………………………………………………………………..55
附錄A COMSOL 軟體使用設定...........................................................56

圖目錄
圖1-1細胞抓取裝置……………………………………………….……5
圖1-2入流角50°蜻蜓翼微流道抓取情形……………………………..6
圖1-3入流角60°蜻蜓翼微流道抓取情形……………………………..6
圖2-1計算流體力學COMSOL模組分類………………………..…...10
圖2-2流體粒子交互作用……………………………………………...10
圖2-3蜻蜓翼結構(線寬=20μm)之速度流線場………………………11
圖2-4蜻蜓翼結構(文獻[18]線寬)之速度流線場.................................12
圖2-5蜻蜓翼前移結構(線寬=20μm)之速度流線場............................12
圖2-6蜻蜓翼前移結構(文獻[18]線寬)之速度流線場........................13
圖2-7蜻蜓翼階梯式結構(線寬=20μm)之速度流線場........................13
圖2-8蜻蜓翼連結式結構(線寬=20μm)之速度流線場........................14
圖2-9本文20μm顆粒在微流道模擬情況...........................................15
圖2-10文獻[18]10μm顆粒在微流道模擬情況...................................15
圖3-1 本文微流道晶片之光罩設計圖.................................................16
圖3-2正光阻與負光阻之程序..............................................................19
圖3-3光阻塗佈機..................................................................................21
圖3-4紅外線對準雙面曝光機..............................................................22
圖3-5 蜻蜓翼結構之微流道製作流程.................................................23
圖3-6聚二甲基矽氧烷之化學結構......................................................25
圖3-7 PDMS經氧氣電漿表面處理示意..............................................27
圖3-8本實驗室之反應離子蝕刻機......................................................28
圖3-9微流道防漏黏合..........................................................................29
圖4-1動態實驗架設..............................................................................30
圖4-2雷射掃描共軛焦顯微鏡原理......................................................31
圖4-3雷射掃描共軛焦顯微鏡..............................................................32
圖4-4微球體動態實驗於微流道之「蜻蜓翼前移型」內灌流情況…...34
圖4-5微球體動態實驗於微流道之「蜻蜓翼連接型」內灌流情況…35
圖4-6微球體動態實驗於微流道之「蜻蜓翼階梯型」內灌流情況.......36
圖4-7模擬壓力圖..................................................................................38
圖4-8模擬粒子軌跡圖..........................................................................38
圖4-9階梯式壓力分界線....................................................................39
圖4-10連接式壓力分界線..................................................................39
圖4-11重作文獻[21]模擬-一個腔體之速度場....................................40
圖4-12重作文獻[21]模擬-二個腔體之速度場....................................41
圖4-13重作文獻[21]模擬-三個腔體之速度場....................................41
圖4-14重作文獻[21]模擬-四個腔體之速度場....................................41
圖4-15重作文獻[21]模擬-五個腔體之速度場....................................42
圖4-16重作文獻[21]模擬-六個腔體之速度場....................................42
圖4-17重作文獻[21]模擬-七個腔體之速度場....................................42
圖4-18重作文獻[21]模擬-八個腔體之速度場....................................43
圖4-19重作文獻[21]模擬-一個腔體之粒子軌跡................................44
圖4-20重作文獻[21]模擬-二個腔體之粒子軌跡................................44
圖4-21重作文獻[21]模擬-三個腔體之粒子軌跡................................44
圖4-22重作文獻[21]模擬-四個腔體之粒子軌跡................................45
圖4-23重作文獻[21]模擬-五個腔體之粒子軌跡................................45
圖4-24重作文獻[21]模擬-六個腔體之粒子軌跡................................45
圖4-25重作文獻[21]模擬-七個腔體之粒子軌跡................................46
圖4-26重作文獻[21]模擬-八個腔體之粒子軌跡................................46
圖4-27細胞抓取裝置之輔助結構........................................................47
圖4-28細胞抓取裝置之輔助結構4000μm-速度場...........................47
圖4-29細胞抓取裝置之輔助結構4000μm-粒子軌跡.......................48
圖4-30細胞抓取裝置之輔助結構=2000μm-速度場...........................49
圖4-31細胞抓取裝置之輔助結構=2000μm -粒子軌跡......................49
圖A-1模型選擇.....................................................................................56
圖A-2選擇空間維度.............................................................................56
圖A-3研究選擇-雙向耦合粒子追蹤....................................................57
圖A-4幾何模型建立.............................................................................58
圖A-5網格建立.....................................................................................59
圖A-6研究時間設定.............................................................................59

表目錄 
表2-1不同顆粒大小的抓率…………………………………………...15
表4- 1微流道內微矽膠球體貼附變化………………………………...33 
表4-2不同長度之抓率………………………………………………...48
References
[1]楊龍杰,掌握微機電,滄海書局,2007年。
[2]吳程遠(譯),“ 別鬧了!費曼先生 ”,台北市天下文化出版。    ( 原著:理察.費曼). 1993。
[3]Y. C. Tai, L. S. Fan, and R. S. Muller, “ IC-process micro-motors: design, technology, and testing, ” Proc. of the 1st IEEE MEMS(or Micro-Tele-Operated Robotics Workshop), 20-22 Feb., Salt Lake City, USA, Page(s):1-6, 1989.
[4]C. Liu, J. B. Huang, Z. Zhu, F. Jiang, S. Tung, Y. C. Tai, and C. M. Ho, “ A micromachined flow shear-stress sensor based on thermal transfer principles, ” Journal of Microelectromechanical Systems, 8 (1), pp. 90-98, 1999.
[5]C. Liu, T. Tsao, G. B. Lee, J.T.S. Leu, Y.W. Yi, Y. C. Tai, and C. M. Ho, “ Out-of-plane magnetic actuators with electroplated permalloy for fluid dynamics control, ” Sensors and Actuators, A: Physical, 78 (2), pp. 190-197, 1999.
[6]P. Yao, G. J. Schneider, and D. W. Prather, “ Three-dimensional lithographical fabrication of microchannels, ” Journal of Microelectromechanical Systems, 14 (4), pp. 799-805,  2005.
[7]J. M. Wang and L. J. Yang, “ Electro-hydro-dynamic (EHD) micropumps with electrode protection by parylene and gelatin, ” Tamkang Journal of Science and Engineering, 8 (3), pp. 231-236, 2005. 
[8]劉冠君 ,“ 圓管挫曲式微型閥門之研製 ”, 淡江大學機械與機電工程學系碩士論文,2006 年 6 月。
[9]S. Shoji and M. Esashi, “ Microflow devices and systems, ” Journal of Micromech. Microeng., 4, pp. 157-171, 1994.
[10]G. W. Gross, B. K. Rhoades, H. M. E. Azzazy and M. C. Wu, “ The use of neuronal networks on multielectrode arrays as biosensors, ” Biosensors and Bioelectronics, 10, (6-7), pp. 553-567, 1995.
[11]李國賓, “ 下一波生物晶片-微流體生醫晶片 ”,科學發展月刊,385期, pp.72-77, 2005.
[12]張文燦,李金德, “ 肝癌患者接受肝臟移植後復發之可能原因”,高雄醫師會誌 Journal of Kaohsiung Medical Association, 18(2), pp. 142-145, 2010.
[13]Cancer Facts & Figures, Cancer Practice, 8(3), pp. 9-22, 2010.
[14]J. Yang, S. A. Mani, J. L. Donaher, S. Ramaswamy, R. A. Itzykson,  C. Come, P. Savagner, I. Gitelman, A. Richardson, and R.A.Weinberg, “ Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis, ” Cell, 117 (7), pp. 927-939, 2004.
[15]P.S. Steeg, “ Metastasis suppressors alter the signal transduction of cancer cells, ” Nature Reviews Cancer, 3 (1), pp. 55-63, 2003.
[16]P. Carmeliet and R. K. Jain, “ Angiogenesis in cancer and other diseases, ” Nature, 407, pp. 249-257, 2000.
[17]愛醫網http://tw.medvov.com/view.aspx?lid=e9e1b5bd-7e1f-486b-9cea-56b4230bce18
[18]林彥祺, “新型渦流捕捉顆粒晶片之設計” , 淡江大學機械與機電工程學系碩士論文,2015 年 6 月。
[19]K. Hoshino, “ Microchip-based immune-magnetic detection of circulating tumor cells, ” Lab on a Chip, 11, p.3449, 2011.
[20]J. H. Kang, “ A combined micro-magnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells, ” Lab on a Chip, 12, pp. 2175–2181, 2012.
[21]E. Sollier, “ Size-selective collection of circulating tumor cells using Vortex technology, ” Lab on a Chip,14, pp. 63-77,2014.
[22]J. Koo and C. Kleinstreuer, “ Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects, ” J. Micromech. Microeng., 13, pp. 568–579, 2003.
[23]S. Gupta, A. C. Baker and W. C. Tang, “Microfluidic platforms for capturing circulating tumor cells, ” Proceedings of the 7th IEEE International Conference on Nano/Molecular Medicine and Engineering, November 10-13, pp. 1-4, 2013.
[24]A. A. Adams et al., “ Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor, ” Journal of the American Chemical Society., 130, pp. 8633 –8641, 2008.
[25]S. Nagrath et al., “ Isolation of rare circulating tumor cells in cancer patients by microchip technology, ” Nature, 450(20), pp. 1235–1239, 2007.
[26]T. Felm et al., “ Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant, ” Clin. Cancer Res., 8, pp. 2073 – 2084, 2002.
[27]A. B. Kesel,“Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils, ” The Journal of Experimental Biology, 203, pp. 3125–3135, 2000.
[28]M. Tamai, Z. Wang, G. Rajagopalan, H. Hu and G. He,“ Aerodynamic performance of a corrugated dragonfly airfoil compared with smooth airfoils at low Reynolds numbers, ” 45th AIAA Aerospace Sciences Meeting, AIAA-2077-0483, 2007.
[29]呂傑文,“微流道表粗對於細胞貼附之影響”, 淡江大學機械與機電工程學系碩士論文,2012年 6 月。
[30]台灣元利儀器股份有限公司 OLS4100
http://www.yuanyu.tw/yuanli/productDetail.php
Terms of Use
Within Campus
On-campus access to my hard copy thesis/dissertation is open immediately
Agree to authorize disclosure on campus
Duration for delaying release from 3 years.
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and I donate the fee to my school library as a development fund.
Duration for delaying release from 3 years.
 Top

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email