淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3108201204410100
中文論文名稱 拍撲翼面在陣風環境下之研究
英文論文名稱 Numerical Simulation of Flapping Airfoil in Gusty Environments
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 王瑞麟
研究生英文姓名 Ruei-Lin Wang
學號 699430319
學位類別 碩士
語文別 英文
口試日期 2012-07-17
論文頁數 132頁
口試委員 指導教授-宛同
委員-潘大知
委員-劉登
中文關鍵字 拍撲翼  陣風  動態網格  延遲失速 
英文關鍵字 Flapping Wing  Gust  Dynamic Grid  LEV 
學科別分類 學科別應用科學航空太空
中文摘要 以拍撲翼作為升力機制的微飛行器,現今已被廣用在軍事、救援、探勘等任務中,但是其飛行上的低高度、低速的飛行限制條件,造成抗風能力不足的現象,因此,探討低速陣風的影響已成為當前航空工業研究的重點。
拜現今電腦技術快速發展所賜,透過增加網格數目來達到增加計算模擬的準確度,卻可以不增加運算時間。本研究首先以2D的拍撲翼面作為基準,將陣風的環境依照不同的方向、風速大小的變化與否做區分,再用動態網格的技術以Fluent這套軟體模擬出拍撲的動作。由我們的結果可以得到陣風環境會對上下翼面的渦流有很大的影響,更會直接影響拍撲翼的升力與阻力值,而陣風方向的不同影響更大。因此,本研究將會對拍撲翼面在陣風環境下性能分析有很大的幫助,更是未來研究微飛行器之抗風性的重要基石。
關鍵詞:拍撲翼,陣風,動態網格,延遲失速
英文摘要 Micro Aerial Vehicles (MAV) use flapping wing as their flying
mechanism. Nowadays MAV have been used more intensively in daily
military, rescue, or reconnaissance missions, but their inherent nature of
low altitude, low speed operation envelope will lead to their weak wind
resistance ability, and thus the investigation of low level gust wind effect is
becoming the focus point in recent aeronautical research.
By the rapidly development in recent computer technology, we can improve simulation accuracy without using more time, through escalating the grid’s number. In this thesis, first choose a standard 2D flapping airfoil as a benchmark, then we can implementing gusty environment in several different directions, and simulate the wind amplitude with both constant speed and sine wave forms by using the dynamic grid technique of software Fluent to generate flapping motion. Our results show that the gusty environment has a strong effect on the vortices both on the upper and the lower surfaces, and will have direct influence on the lift and drag values of the flapping wing. But most profound effect is from the wind direction. As a result, this research will be very helpful to learn about the flapping airfoil’s aerodynamic performance in gusty environment, and could be an important cornerstone in the wind resistance capability consideration of future flapping MAV.
論文目次 CONTENTS VI
LIST OF TABLES VIII
LIST OF FIGURES IX
CHAPTER 1 INTRODUCTION 13
1.1 THE HISTORY OF AVIATION 13
1.2 FLAPPING-WING VEHICLE 15
1.3 ENVIRONMENT INFLUENCE 16
CHAPTER 2 LITERATURE REVIEW 18
2.1 FLIGHT IN NATURE 18
2.2 MECHANISMS WITH FLAPPING-WING AERODYNAMICS 18
2.2.1 Leading-Edge Vortex 18
2.1.2 Pitch-Up 19
2.1.3 Wake Capture 20
2.1.4 Clap-and-Fling Mechanism 22
2.2 DRAGONFLY 22
2.3 FLAPPING MOTION 23
2.4 NUMERICAL SCHEME 24
CHAPTER 3 GUST ENVIRONMENT 26
3.1 GUSTS 26
3.2 POWER SPECTRAL DENSITY 26
3.3 SINUSOIDAL WAVE FUNCTION 28
CHAPTER 4 NUMERICAL METHOD 30
4.1 FLOW CHART 30
4.2 FLOW FIELD ASSUMPTIONS 31
4.3 GOVERNING EQUATIONS 31
4.4 PRE PROCESS 32
4.4.1 Wing Shape and Grid Generation 32
4.4.2 Dynamic Grid 34
4.4.3 Boundary Condition 34
4.5 SOLVER-FLUENT 34
4.5.1 Coupled Solution Method 35
4.5.4 QUICK Scheme 35
4.5.6 PISO 36
4.5.7 Pressure Interpolation Scheme 36
4.6 POST PROCESS 36
CHAPTER 5 RESULTS AND DISCUSSION 37
5.1 WINDLESS ENVIRONMENT 40
5.2 UNIFORM FLOW ENVIRONMENT 50
5.2.1 135-Degree Constant Inflow 51
5.2.2 45-Degree Uniform Inflow 60
5.3 SINUSOIDAL WAVE WIND ENVIRONMENT 71
5.3.1 45-Degree Sinusoidal Wave Inflow 71
5.3.2 135-Degree Sinusoidal Wave Inflow 77
5.4 FLAPPING WING F-FACTOR 82
CHAPTER 6 CONCLUSIONS 92
REFERENCES 94
APPENDIXⅠ 97

List of Tables
TABLE 5.1 MEAN LIFT FORCE AND MEAN DRAG FORCE COMPARE WITH [8], [10] 40
TABLE 5.2 MEAN LIFT FORCE AND MEAN DRAG FORCE COMPARE WITH [10] 51
TABLE 5.3 MEAN LIFT FORCE AND MEAN DRAG FORCE 61
TABLE 5.4 UNIFORM INFLOW MEAN LIFT FORCE AND MEAN DRAG FORCE 70
TABLE 5.5 MEAN LIFT FORCE AND MEAN DRAG FORCE 72
TABLE 5.6 MEAN LIFT FORCE AND MEAN DRAG FORCE 77
TABLE 5.7 MEAN LIFT FORCE AND MEAN DRAG FORCE FOR ALL DIRECTION 82
TABLE 5.8 THE SINE WAVE INFLOW’S MEAN F-FACTOR VALUE AT DIFFERENT DIRECTION 85

List of Figures
FIG. 1.1 THE GENEALOGICAL TREE OF AIRCRAFT 15
FIG. 2.1 THE LEV GENERATION PROCESS [4] 19
FIG. 2.2 EXPERIMENTAL AND NUMERICAL LIFT COEFFICIENTS FOR A FRUIT FLY-MODELED WING [6] 20
FIG. 2.3 EVIDENCE OF WAKE-CAPTURE MECHANISM AND ITS EFFECT ON FORCE GENERATION FOR A ROBOTIC FRUIT FLY-MODELED WING AT RE=136. [6] 21
FIG. 2.4 MOMENTUM TRANSFER IN A WAKE-CAPTURE INTERACTION. [6] 21
FIG. 2.5 ILLUSTRATION OF CLAP-AND-FLING MECHANISM [6]. 22
FIG. 2.6 THE POSITIONS OF A WING ELEMENT IN ONE PERIOD AS MODEL HERE [8] 23
FIG. 2.7 DYNAMIC GRIDS DOMAIN [9] 24
FIG. 4.1 THE CFD FLOW CHART IN THIS THESIS 30
FIG. 4.2 THE STRUCTURE GRIDS 33
FIG. 4.3 THE TRIANGLE GRIDS 33
FIG. 5.1 THE TOTAL GRIDS ARE SMALLER THAN 0.45(GRID QUALITY FACTOR), ESPECIALLY THOSE NEARBY THE WING SURFACE 37
FIG. 5.2 THERE ARE LOTS OF GRIDS BIGGER THAN 0.45(GRID QUALITY FACTOR), ESPECIALLY THOSE NEARBY THE WING SURFACE 38
FIG. 5.3 USING DIFFERENT NUMBERS OF GRID TO CALCULATE LIFT FORCE PER FLAPPING CYCLE 39
FIG. 5.4 LIFT FORCE PER FLAPPING CYCLES COMPARE WITH [8], [10] 41
FIG. 5.5 DRAG FORCE PER FLAPPING CYCLES COMPARE WITH [8], [10] 41
FIG. 5.6 DRAG FORCE COMPONENT 42
FIG. 5.7 VORTICES CONTOUR (1/SEC) 46
FIG. 5.8 PRESSURE CONTOUR (PA) 50
FIG. 5.9 LIFT FORCE PER FLAPPING CYCLE COMPARE WITH [10] 52
FIG. 5.10 DRAG FORCE PER FLAPPING CYCLE COMPARE WITH [10] 52
FIG. 5.11 DRAG FORCE COMPONENT BY PRESSURE DRAG AND VISCOUS DRAG 53
FIG. 5.12 VORTICITY CONTOUR PER 0.05T (1/SEC) 57
FIG. 5.13 PRESSURE CONTOUR (PA) 60
FIG. 5.14 DRAG FORCE COMPONENT BY PRESSURE DRAG AND VISCOUS DRAG 61
FIG. 5.15 LIFT FORCE PER FLAPPING CYCLES 62
FIG. 5.16 DRAG FORCE PER FLAPPING CYCLES 62
FIG. 5.17 VORTICITY CONTOUR (1/SEC) 66
FIG. 5.18 PRESSURE CONTOUR (PA) 70
FIG. 5.19 DRAG FORCE COMPONENT BY PRESSURE DRAG AND VISCOUS DRAG 72
FIG. 5.20 LIFT FORCE PER FLAPPING CYCLES 73
FIG. 5.21 DRAG FORCE PER FLAPPING CYCLES 73
FIG. 5.22 LIFT FORCE PER FLAPPING CYCLES 74
FIG. 5.23 DRAG FORCE PER FLAPPING CYCLES 74
FIG. 5.24 VORTICITY CONTOUR (1/SEC) 75
FIG. 5.25 PRESSURE CONTOUR (PA) 76
FIG. 5.26 DRAG FORCE COMPONENT BY PRESSURE DRAG AND VISCOUS DRAG 77
FIG. 5.27 LIFT FORCE PER FLAPPING CYCLES 78
FIG. 5.28 DRAG FORCE PER FLAPPING CYCLES 78
FIG. 5.29 LIFT FORCE PER FLAPPING CYCLES 79
FIG. 5.30 DRAG FORCE PER FLAPPING CYCLES 79
FIG. 5.31 VORTICITY CONTOUR (1/SEC) 80
FIG. 5.32 PRESSURE CONTOUR (PA) 81
FIG. 5.33 THE F-FACTOR VS. FLAPPING CYCLES AT WINDLESS CONDITION 87
FIG. 5.34 THE F-FACTOR VS. FLAPPING CYCLES AT 0-DEGREE SINE WAVE CONDITION 87
FIG. 5.35 THE F-FACTOR VS. FLAPPING CYCLES AT 180-DEGREE SINE WAVE CONDITION 88
FIG. 5.36 THE F-FACTOR VS. FLAPPING CYCLES AT 45-DEGREE SINE WAVE CONDITION 88
FIG. 5.37 THE F-FACTOR VS. FLAPPING CYCLES AT 90-DEGREE SINE WAVE CONDITION 89
FIG. 5.38 THE F-FACTOR VS. FLAPPING CYCLES AT 135-DEGREE SINE WAVE CONDITION 89
FIG. 5.39 THE F-FACTOR VS. FLAPPING CYCLES AT 225-DEGREE SINE WAVE CONDITION 90
FIG. 5.40 THE F-FACTOR VS. FLAPPING CYCLES AT 270-DEGREE SINE WAVE CONDITION 90
FIG. 5.41 THE F-FACTOR VS. FLAPPING CYCLES AT 315-DEGREE SINE WAVE CONDITION 91
FIG. A1 LIFT FORCE PER FLAPPING CYCLES 97
FIG. A2 DRAG FORCE PER FLAPPING CYCLES 97
FIG. A3 VORTICITY CONTOUR (1/SEC) 98
FIG. A4 PRESSURE CONTOUR (PA) 99
FIG. A5 LIFT FORCE PER FLAPPING CYCLES 100
FIG. A6 DRAG FORCE PER FLAPPING CYCLES 100
FIG. A7 VORTICITY CONTOUR (1/SEC) 101
FIG. A8 PRESSURE CONTOUR (PA) 102
FIG. A9 LIFT FORCE PER FLAPPING CYCLES 103
FIG. A10 DRAG FORCE PER FLAPPING CYCLES 103
FIG. A11 VORTICITY CONTOUR (1/SEC) 104
FIG. A12 PRESSURE CONTOUR (PA) 105
FIG. A13 LIFT FORCE PER FLAPPING CYCLES 106
FIG. A14 DRAG FORCE PER FLAPPING CYCLES 106
FIG. A15 VORTICITY CONTOUR (1/SEC) 107
FIG. A16 PRESSURE CONTOUR (PA) 108
FIG. A17 LIFT FORCE PER FLAPPING CYCLES 109
FIG. A18 DRAG FORCE PER FLAPPING CYCLES 109
FIG. A19 VORTICITY CONTOUR (1/SEC) 110
FIG. A20 PRESSURE CONTOUR (PA) 111
FIG. A21 LIFT FORCE PER FLAPPING CYCLES 112
FIG. A22 DRAG FORCE PER FLAPPING CYCLES 112
FIG. A23 VORTICITY CONTOUR (1/SEC) 113
FIG. A24 PRESSURE CONTOUR (PA) 114
FIG. A25 LIFT FORCE PER FLAPPING CYCLES 115
FIG. A26 DRAG FORCE PER FLAPPING CYCLES 115
FIG. A27 VORTICITY CONTOUR (1/SEC) 116
FIG. A28 PRESSURE CONTOUR (PA) 117
FIG. A29 LIFT FORCE PER FLAPPING CYCLES 118
FIG. A30 DRAG FORCE PER FLAPPING CYCLES 118
FIG. A31 VORTICITY CONTOUR (1/SEC) 119
FIG. A32 PRESSURE CONTOUR (PA) 120
FIG. A33 LIFT FORCE PER FLAPPING CYCLES 121
FIG. A34 DRAG FORCE PER FLAPPING CYCLES 121
FIG. A35 VORTICITY CONTOUR (1/SEC) 122
FIG. A36 PRESSURE CONTOUR (PA) 123
FIG. A37 LIFT FORCE PER FLAPPING CYCLES 124
FIG. A38 DRAG FORCE PER FLAPPING CYCLES 124
FIG. A39 VORTICITY CONTOUR (1/SEC) 125
FIG. A40 PRESSURE CONTOUR (PA) 126
FIG. A41 LIFT FORCE PER FLAPPING CYCLES 127
FIG. A42 DRAG FORCE PER FLAPPING CYCLES 127
FIG. A43 VORTICITY CONTOUR (1/SEC) 128
FIG. A44 PRESSURE CONTOUR (PA) 129
FIG. A45 LIFT FORCE PER FLAPPING CYCLES 130
FIG. A46 DRAG FORCE PER FLAPPING CYCLES 130
FIG. A47 VORTICITY CONTOUR (1/SEC) 131
FIG. A48 PRESSURE CONTOUR (PA) 132

參考文獻 [1] Launie, R. A., “The History of Airplanes,” School Science and Mathematics, Vol. 47, Issue 4, April 1947, pp. 359–368.

[2] Gibbs-Smith, C. H., “The First Powered Flight,” The Wright Brothers Aviation Pioneers and Their Work 1899-1911, Museum, London, 1987, pp. 10-12.

[3] Mueller, J. T. and DeLaurier, J. D., “An Overview of Micro Air Vehicle Aerodynamics,” Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Vol. 195, 2001, pp. 1-9.

[4] Sane, S. P., “The Aerodynamics of Insect Flight,” The Journal of Experimental Biology, Vol. 206, August, 2003, pp. 4191-4208.

[5] Kim, J. H. and Kim, C., “Computational Investigation of Three-Dimensional Unsteady Flowfield Characteristics Around Insects’ Flapping Flight,” AIAA Journal, Vol. 49, No. 5, May 2011, pp. 953-968.

[6] Shyy, W., Lian, Y. S., Tang, J., Viieru, D., and Liu, H., Aerodynamics of Low Reynolds Number Flyers. Cambridge New York, 2008, Ch. 4, pp. 101-157.

[7] Azuma, A. and Watanabe, T., “Flight Performance of A Dragonfly,” J, Exp. Biol. Vol. 137, 1988, pp. 221-252.

[8] Jane Wang, Z., “Two Dimensional Mechanism for Insect Hovering,” Physical Review Letters, Vol. 85, No. 10, 2000, pp. 2216-2219.

[9] Jane Wang, Z., “Computation of Insect Hovering,” Mathematical Methods in The Applied Sciences Math. Meth. Appl. Sci. Vol. 24, 2001, pp. 1515–1521.

[10] Wan, T., and Huang, C. K., “Numerical Simulation of Flapping Wing Aerodynamic Performance Under Gust Wind Conditions,” Proceedings of 26th ICAS Conference, Anchorage, Alaska, US, Sept., 2008.

[11] Det, N. V., Environmental Conditions and Environmental Loads. Veritasveien1, NO-1322 Hovik, Norway, 2007, Ch. 2, pp. 23.

[12] Kim, T. U. and Hwang, I. H., “Reliability Analysis of Composite Wing Subjected to Gust Loads,” Composite Structures, Vol. 66, 2004, pp. 527-531.

[13] Szabolcsi, R., “Stochastic Noises Affecting Dynamic Performances of the Automatic Flight Control System,” Review of the Air Force Academy The Scientific Informative Review, Romania Ministry of Defense, No 1(14), 2009, pp. 23-31.

[14] Shyy, W., Lian, Y., Tang, J., Liu, H., Trizila, P., Stanford, B., Bernal, L., Cesnik, C., Friedmann, P. and Ifju, P., “Computational Aerodynamics of Low Reynolds Number Plunging, Pitching and Flexible Wings for MAV Applications,” Acta Mechanica Sinica, Vol. 24, No. 4, 2008, pp. 351-373.

[15] Watkins, S., Milbank, J. and Benjamin, J., “Atmospheric Winds and Their Implications for Micro Air Vehicles,” AIAA Journal, Vol. 44, No. 11, November 2006, pp. 2591-2600.

[16] Lian, Y., “Numerical Study of a Flapping Airfoil in Gusty Environments,” 27th AIAA Paper 2009-3952, 2009.

[17] Yang, G., “Numerical Analyses of Discrete Gust Response for an Aircraft,” Journal of Aircraft, vol. 41, No. 6, November 2004, pp. 1353-1359.

[18] GAMBIT User’s Guide.

[19] Lian, Y., “Numerical Investigation of Boundary Effects on Flapping Wing Study,” AIAA Paper 2009-0539.

[20] FLUENT 6.2’s User Guide.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-09-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-09-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信