淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-3107201801244500
中文論文名稱 從神經資訊系統觀點探究廣告代言人與產品的價格、規格對購買意願之影響
英文論文名稱 The Effects of Advertising Endorser and Product Price-Specification on Purchase Intention from the Perspective of NeuroIS
校院名稱 淡江大學
系所名稱(中) 資訊管理學系碩士班
系所名稱(英) Department of Information Management
學年度 106
學期 2
出版年 107
研究生中文姓名 潘正薇
研究生英文姓名 Cheng-Wei Pan
學號 603630160
學位類別 碩士
語文別 中文
口試日期 2018-06-02
論文頁數 69頁
口試委員 指導教授-吳錦波
委員-郭秋田
委員-徐煥智
委員-吳錦波
中文關鍵字 推敲可能模式  EEG  相關事件電位  beta波  產品價格 
英文關鍵字 ELM  EEG  ERPs  beta wave  product prices 
學科別分類
中文摘要 神經行銷(Neuromarketing)是為探索人腦對於市場銷售與廣告之間的刺激之行銷學,近年被廣泛用來評估廣告效益,渴望從中發現消費者與市場產品的關聯性,期盼以神經科學角度注入新的行銷資源。過去研究鮮少探討廣告代言人對產品價格與規格之影響,亦能夠帶給消費者不同的認知反應。因此,本研究透過推敲可能模式(elaboration likelihood model, ELM)結合EEG(electroencephalogram)腦波圖和問卷,探討中央路徑與周邊路徑對購買意願之腦波差異,並從生理層面與實際行為討論消費者之購買意圖。本研究使用相關事件電位(event-related potentials)之準實驗法,共蒐集60個有效樣本以驗證本研究模型。根據EEG腦波圖與ANOVA之分析結果說明,在網路購物情境下,beta波的平均時間振幅顯示周邊路徑大於中央路徑;對於廣告代言人比起素人,明星更具影響。產品之高/低價格與高/低規格之腦刺激說明消費者在購買3C產品時,容易傾向購買高價格、高規格之產品,且代言人形象與之有強烈的連結。腦波與問卷兩方面之研究結果共同說明,周邊路徑比中央路徑更讓消費者採信。規格較於價格更能帶給消費者更好的反應和感受,推論與其單方面評估該產品之價格,消費者更容易參考實際的產品性質來下購買決策。本研究透過網路廣告設計與神經資訊系統之觀點期許能提供產品開發商、行銷商與網路經銷商針對大專生族群及不同產品擬定更完善的廣告策略。
英文摘要 Purpose-The purpose of this research is to investigate the consumer’s purchase intention from the physiological level and actual behavior. Based on the elaboration likelihood model (ELM), brain wave and self-reported data are collected to explore the differences toward purchases between the central route and the peripheral route.

Design/methodology/approach-We employ experimental research design to collect data from 60 subjects. Their event-related potentials (ERPs) data are mainly analyzed to test the research model. The self-reported data are also analyzed to complement those of ERPs.

Findings-The results show that the average time amplitude of the consumers’βwave is higher on the peripheral route than the central route in online shopping. In addition, the advertising endorsers by celebrities have greater effect than by common people. The high/low price of the product and the high/low specification brain stimulation indicate that consumers tend to purchase high-priced and high-spec products when buying 3C products, and the advertising endorsers by celebrities have strong connection. Both brain activation and self-reported data show that the peripheral route is more acceptable to consumers than the central route. Specifications are more likely to give consumers stronger reactions and feelings than prices. Thus the research could conclude that, instead of use product prices as major evaluation criteria, consumers tend to examine overall nature of the product to make purchase decision-making.

Research limitations/implications-The accuracy of the brain activation experiment, it must be established to observe independent individuals in a stable state. However, we cannot judge from the appearance that the individual is an unstable physiological state.

Practical implications-The insights from the findings can benefit designers and marketers in implementing more effective marketing strategies for college students and for different products.

Originality/Value-From the perspective of NeuroIS, this study uses ELM as theoretical model to guide the experimental design and record brain activation, supplemented by self-reported data. We attempt to observe the same behavior with different measurement tools to link and complement the bias produced by a single traditional measurement tool.
論文目次 目錄
第一章 緒論 1
1.1 研究背景與動機 1
1.1.1 研究背景 1
1.1.2 研究動機 2
1.2 研究目的 2
1.3 研究流程與論文架構 3
1.3.1 研究流程 3
1.3.2 論文架構 4
第二章 文獻探討 5
2.1 神經資訊系統 5
2.1.1 神經資訊系統之定義 5
2.1.2 認知神經科學與廣告之應用 5
2.1.3 腦電圖與廣告之應用 6
2.2 腦波測量 7
2.2.1 腦波概述 7
2.2.2 beta波頻率 8
2.2.3 價格評估與大腦區域 9
2.2.4 相關事件電位 10
2.3 廣告概述 10
2.3.1 廣告代言人定義 10
2.3.2 代言式廣告之代言人知名度 11
2.4 推敲可能模式 11
2.5 過去研究產品採用之相關構面 13
2.5.1 產品價格 13
2.5.2 產品規格 14
第三章 研究方法 15
3.1 研究架構 15
3.2 腦波研究假設之推導 16
3.2.1 推敲可能模型對腦波之影響 16
3.2.2 代言人知名程度之影響 17
3.2.3 價格對論點品質之影響 17
3.3 腦波之研究變項與操作化定義 18
3.3.1 價格之操作化定義 18
3.3.2 規格之操作化定義 19
3.3.3 代言人知名程度之操作化定義 19
3.4 問卷研究假設之推導 20
3.4.1 推敲可能模式對購買意圖之影響 20
3.4.2 代言人知名程度對購買意圖之影響 20
3.4.3 產品價格對論點品質之影響 21
3.5 問卷設計與變數測量 21
3.5.1 問卷題項 21
3.5.2 構面操作型定義 25
3.6 資料收集 26
3.6.1 實驗對象與範圍 26
3.6.2 腦波實驗流程 27
3.6.3 腦波實驗設計 29
3.6.4 腦波實驗情境設計 30
3.6.5 腦波資料分析流程 32
第四章 資料分析 34
4.1 資料分析方法 34
4.1.1 腦波分析 34
4.1.2 問卷分析 34
4.2 樣本結構描述 34
4.3 腦波之資料驗證前檢定 35
4.4 腦波之假說與驗證 37
4.4.1 ANOVA 37
4.4.2 腦波之資料事後檢定 39
4.5 前額葉之腦譜圖 42
4.6 腦波與購買意圖 43
4.7 腦波之研究結果與討論 45
4.8 問卷之假說與驗證 46
4.8.1 量測模型分析 46
4.8.2 結構模型分析 48
4.9 問卷之研究結果與討論 50
4.9.1 推敲可能模式對購買意圖之影響 51
4.9.2 代言人知名度對購買意圖之影響 51
4.9.3 價格與規格對購買意圖之影響 52
第五章 結論與建議 53
5.1 綜合討論 53
5.2 理論意涵 54
5.3 實務意涵 55
5.4 研究限制 56
5.5 未來研究建議 56
參考文獻 57
附錄 66

圖目錄
圖 1 1:實驗流程圖 3
圖 2 1:國際標準10-20系統腦電極位置 9
圖 2 2:腦波儀位置對應圖 9
圖 2 3:本研究概念模式 12
圖 3 1:腦波之研究架構圖 15
圖 3 2:問卷之研究架構圖 16
圖 3 3:腦波實驗之價格與規格區間 19
圖 3 4:腦波實驗流程 27
圖 3 5:腦波感測點為綠色燈號 28
圖 3 6:腦波感測點為黃或橘色燈號 28
圖 3 7:濾波流程 33
圖 4 1:A-D區間的0-600毫秒腦譜圖分布 42
圖 4 2:受代言人影響的A-D區間 0-600毫秒腦譜圖分布 43
圖 4 3:本研究量測模型分析圖 49
圖 4 4:本研究結構模行分析圖 49

表目錄
表 2 1 :大腦成像工具比較表 6
表 2 2 :腦波頻率與振幅 8
表 3 1 :論點品質之衡量問項 22
表 3 2 :來源可信度之衡量問項 22
表 3 3 :購買意圖之衡量問項 23
表 3 4 :規格之衡量問項 23
表 3 5 :價格之衡量問項 23
表 3 6 :代言人知名程度之衡量問項 24
表 3 7 :各研究構面操作型定義 25
表 3 8 :第一輪區間意義 29
表 3 9 :第二輪實驗變數 29
表 3 10 :實驗情境設計 31
表 4 1 :一般性統計資料(N=60) 35
表 4 2 :觀察值處理摘要 36
表 4 3 :常態檢定 36
表 4 4 :常態檢定Q-Q圖 36
表 4 5 :變異數分析 37
表 4 6 :本研究之腦波假說與驗證結果 38
表 4 7 :變異數分析 39
表 4 8 :事後檢定-沒有代言人 40
表 4 9 :事後檢定-有代言人 41
表 4 10 :變異數分析 44
表 4 11 :購買意圖之腦譜圖 44
表 4 12 :本研究之各構面信度分析 46
表 4 13 :本研究之各構面相關係數矩陣與AVE值 47
表 4 14 :各指標交叉負荷量表 47
表 4 15 :各構面路徑係數與P值 50
表 4 16 :本研究之問卷假說與驗證結果 50




參考文獻 一、英文部分
[1] Adomavicius, G., Dimoka, A., Gupta, A., & Pavlou, P. (2009). Reducing the cognitive overload in continuous combinatorial auctions: Evidence from an fMRI study. Proceedings of, University of Minnesota, Minneapolis, USA,
[2] Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour.
[3] Al-Hudhud, G., Alzamel, M. A., Alattas, E., & Alwabil, A. (2014). Using brain signals patterns for biometric identity verification systems. Computers in Human Behavior, 31, 224-229.
[4] Ambler, T., Braeutigam, S., Stins, J., Rose, S., & Swithenby, S. (2004). Salience and choice: Neural correlates of shopping decisions. Psychology & Marketing, 21(4), 247-261.
[5] Anghel, C. (2009). The effect of celebrity endorsements on gift-giving purchases: An application of the elaboration likelihood mode Available from American Studies Commons.
[6] Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
[7] Belanche, D., Flavián, C., & Pérez-Rueda, A. (2017). Understanding interactive online advertising: Congruence and product involvement in highly and lowly arousing, skippable video ads. Journal of Interactive Marketing, 37, 75-88.
[8] Bhattacherjee, A., & Sanford, C. (2006). Influence processes for information technology acceptance: An elaboration likelihood model. MIS Quarterly, 30(4), 805-825.
[9] Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2001). Consumer behavior 9th. South-Western Thomas Learning.Mason, OH,
[10] Breckler, S. J. (1984). Empirical validation of affect, behavior, and cognition as distinct components of attitude. Journal of Personality and Social Psychology, 47(6), 1191.
[11] Calhoun, V. D., Adali, T., Pearlson, G., & Kiehl, K. (2006). Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data. NeuroImage, 30(2), 544-553.
[12] Chang, T., & Wildt, A. R. (1994). Price, product information, and purchase intention: An empirical study. Journal of the Academy of Marketing Science, 22(1), 16-27.
[13] Chiang, K., & Dholakia, R. R. (2003). Factors driving consumer intention to shop online: An empirical investigation. Journal of Consumer Psychology, 13(1-2), 177-183.
[14] Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), vii-xvi.
[15] Chin, W. W. (2010). How to write up and report PLS analyses. Handbook of partial least squares (pp. 655-690) Springer.
[16] Darrow, C. W., Vieth, R. N., & Wilson, J. (1957). Electrocephalographic" blocking" and" adaptation.". Science,
[17] Dimoka, A. (2011). Brain mapping of psychological processes with psychometric scales: An fMRI method for social neuroscience. NeuroImage, 54, S263-S271.
[18] Dimoka, A. (2012). How to conduct a functional magnetic resonance (fMRI) study in social science research.
[19] Dimoka, A., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., Gefen, D., . . . Pavlou, P. A. (2010). On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS.
[20] Dimoka, A., & Davis, F. D. (2008). Where does TAM reside in the brain? the neural mechanisms underlying technology adoption. ICIS 2008 Proceedings, , 169.
[21] Dimoka, A., Pavlou, P. A., & Davis, F. D. (2011). Research commentary—NeuroIS: The potential of cognitive neuroscience for information systems research. Information Systems Research, 22(4), 687-702.
[22] Dodds, W. B., Monroe, K. B., & Grewal, D. (1991a). Effects of price, brand, and store information on buyers' product evaluations. Journal of Marketing Research, , 307-319.
[23] Dodds, W. B., Monroe, K. B., & Grewal, D. (1991b). Effects of price, brand, and store information on buyer's product evaluations. Journal of Marketing Research, 28(3), 307-319.
[24] Dodds, W. K., Gudder, D. A., & Mollenhauer, D. (1995). The ecology of nostoc. J Phycol, 31, 2-18.
[25] Eckert, R., Randall, R., & Augustine, G. (1988). Animal physiology: Mechanisms and adaptations. WH Freeman & Co.
[26] Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Akron, US.: University of Akron Press.
[27] Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, , 382-388.
[28] Freiden, J. B. (1984). Advertising spokesperson effects: Examination of endorser type and gender on two audiences. Journal of Advertising Research, 24(5), 33-41.
[29] Friedman, H. H., & Friedman, L. (1979). Endorser effectiveness by product type. Journal of Advertising Research,
[30] Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM) Sage Publications.
[31] Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–319.
[32] Isabella, G., Mazzon, J. A., & Dimoka, A. (2015). Culture differences, difficulties, and challenges of the neurophysiological methods in marketing research. Journal of International Consumer Marketing, 27(5), 346-363.
[33] Jasper, H., & Penfield, W. (1949). Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus. Archiv Für Psychiatrie Und Nervenkrankheiten, 183(1-2), 163-174.
[34] Kaikati, J. G. (1987). Celebrity advertising: A review and synthesis. International Journal of Advertising, 6(2), 93-105.
[35] Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2000). Principles of neural science McGraw-hill New York.
[36] Klebba, J. M. (1985). Physiological measures of research: A review of brain activity, electrodermal response, pupil dilation, and voice analysis methods and studies. Current Issues and Research in Advertising, 8(1), 53-76.
[37] Klem, G. H., LuÈders, H. O., Jasper, H., & Elger, C. (1999). The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol, 52(3), 3-6.
[38] Kuan, K. K., Zhong, Y., & Chau, P. Y. (2014). Informational and normative social influence in group-buying: Evidence from self-reported and EEG data. Journal of Management Information Systems, 30(4), 151-178.
[39] Léger, P., Cronan, P., Charland, P., Pellerin, R., Babin, G., & Robert, J. (2012). Authentic OM problem solving in an ERP context. International Journal of Operations & Production Management, 32(12), 1375-1394.
[40] Lim, K. H., Sia, C. L., Lee, M. K., & Benbasat, I. (2006). Do I trust you online, and if so, will I buy? an empirical study of two trust-building strategies. Journal of Management Information Systems, 23(2), 233-266.
[41] Luck, S. J. (2014). An introduction to the event-related potential technique MIT Press.
[42] Maio, G. R., & Olson, J. M. (1999). Why we evaluate: Functions of attitudes Psychology Press.
[43] McCracken, G. (1989). Who is the celebrity endorser? cultural foundations of the endorsement process. Journal of Consumer Research, 16(3), 310-321.
[44] McGann, R. (2005). Most active web users are young, affluent. ClickZ Network, Http://Www.Clickz.Com/3455741,
[45] Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229-240.
[46] Müller-Putz, G. R., Riedl, R., & Wriessnegger, S. C. (2015). Electroencephalography (EEG) as a research tool in the information systems discipline: Foundations, measurement, and applications. Cais, 37, 46.
[47] Ohanian, R. (1990). Construction and validation of a scale to measure celebrity endorsers' perceived expertise, trustworthiness, and attractiveness. Journal of Advertising, 19(3), 39-52.
[48] Pallister, J. G., Wang, H. C., & Foxall, G. R. (2007). An application of the style/involvement model to financial services. Technovation, 27(1), 78-88.
[49] Park, C. W., Jaworski, B. J., & Maclnnis, D. J. (1986). Strategic brand concept-image management. The Journal of Marketing, , 135-145.
[50] Park, M., Turner, B. A., & Pastore, D. L. (2008). Effective public service advertisements to attract volunteers for the special olympics: An elaboration likelihood perspective. Sport Management Review, 11(2), 165-192.
[51] Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. Communication and persuasion (pp. 1-24) Springer.
[52] Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and peripheral routes to advertising effectiveness: The moderating role of involvement. Journal of Consumer Research, 10(2), 135-146.
[53] Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S., Johnson, R., . . . Rugg, M. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
[54] Plassmann, H., Ramsøy, T. Z., & Milosavljevic, M. (2012). Branding the brain: A critical review and outlook. Journal of Consumer Psychology, 22(1), 18-36.
[55] Richardson, P. S., Dick, A. S., & Jain, A. K. (1994). Extrinsic and intrinsic cue effects on perceptions of store brand quality. The Journal of Marketing, , 28-36.
[56] Sussman, S. W., & Siegal, W. S. (2003). Informational influence in organizations: An integrated approach to knowledge adoption. Information Systems Research, 14(1), 47-65.
[57] Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., . . . Winer, R. S. (2015). Predicting advertising success beyond traditional measures: New insights from neurophysiological methods and market response modeling. Journal of Marketing Research, 52(4), 436-452.
[58] vom Brocke, J., & Liang, T. (2014). Guidelines for neuroscience studies in information systems research. Journal of Management Information Systems, 30(4), 211-234.
[59] Wang, Y. J., & Minor, M. S. (2008). Validity, reliability, and applicability of psychophysiological techniques in marketing research. Psychology & Marketing, 25(2), 197-232.
[60] Wicke, Donald B Lindsley JD. (2013). The electroencephalogram: Autonomous electrical activity in man and animals. Bioelectric Recording Techniques: Electroencephalography and Human Brain Potentials, 1
[61] Yang, L., Ma, R., Zhang, H. M., Guan, W., & Jiang, S. (2017). Driving behavior recognition using EEG data from a simulated car-following experiment. Accident Analysis & Prevention,
[62] Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business research methods Cengage Learning.

二、中文部分
[1] 孫光天,汪昌賢,曾瑞敏,連悅珊,李耀全,蘇士閔,謝宗澔. (2008). 運用 p300 訊號於偵測大腦印象之研究. Paper presented at the 2008年台灣國際醫學資訊聯合研討會 (Jcmit2008), 80-84.
[2] 李家瑩, 李淑美, & 黃偉珉. (2015). 以推敲可能模式探討消費者創新與新產品採用之影響: 以智慧型手機應用程式為例. Information Management, 22(1), 1-30.
[3] 李韋佑. (2008). 代言人特質對於代言式廣告效果的負面影響. 國立中山大學傳播管理研究所碩士論文, , 1-118.
[4] 蕭文龍, 黃莉君, & 楊雅雯. (2016). 神經資訊系統文獻彙整分析. 東吳經濟商學學報, (92), 37-56.
[5] 贾会宾 (Ed.). (2013). Eeglab 操作手册(中文版) (20130616th ed.). 华中师范大学心理学院:
[6] 陳薇帆. (2011). 以事件相關電位探討中文語音辨識中的字形一致性效應. 政治大學心理學研究所學位論文, , 1-71.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2023-08-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2023-08-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信