§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3107201721252500
DOI 10.6846/TKU.2017.01102
論文名稱(中文) 非平坦週期性表面之微波成像
論文名稱(英文) Microwave Imaging of Periodic Rough Surfaces.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 詹茗凱
研究生(英文) Ming-Kai Chan
學號 604440148
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-30
論文頁數 58頁
口試委員 指導教授 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 易志孝(chyih@ee.tku.edu.tw)
委員 - 方文賢(whf@mail.ntust.edu.tw)
關鍵字(中) 微波成像
非平坦週期性表面
動差法
自我適應之差異型演化法
關鍵字(英) Microwave Imaging
Periodic Rough Surface
Method of Moments
Self-Adaptive Dynamic Differential Evolution(SADDE)
第三語言關鍵字
學科別分類
中文摘要
本論文將對週期性非平坦表面進行研究,首先運用馬克斯威爾方程式、週期性格林函數和邊界條件推導出正散射理論之積分方程式,再配合動差法將其轉為矩陣,計算散射場,並進行數值模擬。吾人運用所得到的積分方程式及量測到的散射場,將逆散射問題轉化成最佳化問題,搭配自我適應之動態差異型演化法來處理電磁成像的大量未知數。對於不同的週期長度、介電常數和表面形狀參數,使用自我適應之動態差異型演化法(SADDE)重建,測試其對週期性非平坦表面的重建結果和抗雜訊能力。
利用自我適應之動態差異性演化法重建出週期性非平坦表面,不論初始的猜測值如何,自我適應之動態差異性演化法總會收歛到整體的極值(global extreme),因此在數值模擬顯示中,即使最初的猜測值遠大於實際值,我們仍可求得準確的數值解,成功的重建出表面形狀函數、週期長度和相對介電常數,模擬結果顯示在雜訊低於1%的情況下,吾人都可得到良好的實驗結果。
英文摘要
This thesis presents the reconstruction of the periodic rough surface.By self-adaptive dynamic differential evolution(SADDE) using the Maxwell equations, the periodic Green functions and the boundary conditions, we can get the integral equations,then convert them into matrix form by the method of moment(MoM). We can reconstruct the shape of periodic rough surface through the application of the integral equations and the measured scattered field. The inverse scattering problem is transformed into an optimization problem and solved by self-adaptive dynamic differential evolution(SADDE) which can process a lot of unknowns for the electromagnetic imaging problems. The thesis tests the search ability and the resistance to noise for SADDE by different initial guesses for the periodic rough surface. 
By using the SADDE to reconstruct the periodic rough surface, numerical results show that the SADDE converges to the overall extreme value (global extreme) regardless of the initial guess. Even if the initial guess is far away from the actual value, SADDE can get the correct shape,the periodic length and the relative permittivity of the periodic rough surfaces. Simulation results also show that when the noise in less than 1%, we can also reconstruct the good result.
第三語言摘要
論文目次
目錄
第一章 簡介	1
1.1 研究動機與相關文獻	1
1.2 本研究之貢獻	7
1.3 各章內容簡述	8
第二章 週期性非平坦表面之逆散射理論	9
2.1 正散射的理論公式推導	9
2.2 動差法求正散射公式	13
2.3 正散射的理論數值驗證	16
第三章  自我適應之動態差異型演化法(Self-Adaptive Dynamic
Differential Evolution)	18
第四章  數值分析及模擬結果	26
4.1 模擬環境介紹	26
4.2 模擬結果	29
第五章 結論	48
參考文獻	50
附錄一 加快週期性格林函數收斂的方法	56
附錄二 當y≈y'時改進週期性格林函數收斂的方法	58

圖目錄
圖2.1 週期性非平坦表面示意圖	10
圖2.2 驗證正散射模擬示意圖	17
圖3.1 自我適應之動態差異型演化法流程圖	20
圖3.2 自我適應之動態差異型進化法中突變方法一的示意圖	22
圖3.3 自我適應之動態差異型進化法中突變方法二的示意圖	23
圖4.1 模擬環境示意圖	27
圖4.2  DF、DP之趨勢圖(a)d=0.04m (b)d=0.05m	30
圖4.2  DF、DP之趨勢圖(c)d=0.06m (d)d=0.07m	31
圖4.2  DF、DP之趨勢圖(e)d=0.083m	32
圖4.3 DF、DEPS之趨勢圖(a)d=0.04m (b)d=0.05m	33
圖4.3 DF、DEPS之趨勢圖(c)d=0.06m (d)d=0.07m	34
圖4.3 DF、DEPS之趨勢圖(e)d=0.083m	35
圖4.4 表面之重建結果(a)d=0.04m (b)d=0.05m	36
圖4.4 表面之重建結果(c)d=0.06m (d)d=0.07m	37
圖4.4 表面之重建結果(e)d=0.083m	38
圖4.5 不同週期長度之重建錯誤率趨勢圖	39
圖4.6 d=0.06m加入不同雜訊比之DF、DP和DEPS趨勢圖	41
圖4.7 例子二之DF、DP趨勢圖	43
圖4.8 例子二之DF、DEPS趨勢圖	43
圖4.9 例子二之表面重建結果	44
圖4.10 例子二加入不同雜訊比之DF、DP和DEPS趨勢圖	44
圖4.11 例子三之DF、DP趨勢圖	46
圖4.12 例子三之DF、DEPS趨勢圖	46
圖4.13 例子三之表面重建結果	47
圖4.14 例子三加入不同雜訊比之DF、DP和DEPS趨勢圖	47

表目錄
表2.1 切不同段數之三個測量點的散射場值	16
表4.1 不同週期長度之重建錯誤率	39
參考文獻
[1]	T. Rubak, O. S. Kim, P. Meincke, “Computational validation of a 3-D microwave imaging system for breast-cancer screening,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 7, pp.2105-2115, Jul. 2009.
[2]	M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp.1349-1352, 2009.
[3]	J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 7, pp.2318-2326, Jul. 2010.
[4]	K. M. S. Thotahewa, J.-M. Redoute and M. R. Yuce, “Propagation, power absorption, and temperature analysis of UWB wireless capsule endoscopy devices operating in the human body,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 11, pp. 3823-3833, Nov. 2015.
[5]	J. Gu and X. B. Wang, “Near field electromagnetic scattering model studying for rough land surface,in Proc. APCAP, 2014, pp. 987-990.
[6]	J.A. DeSanto, “Exact spectral formalism for rough-surface scattering,” Journal of the Optical Society of America A, vol. 2, pp.2202-2207, Dec. 1985.
[7]	Q. Li, H. Chan, L. Tsang, “Monte Carlo simulations of wave scattering from lossy dielectric random rough surfaces using the physics-based two-grid method and the canonical-grid method,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 4, pp.752-763, Apr. 1999.
[8]	L. X. Guo and Z. S. Wu, “Moment method with wavelet expansions for fractal rough surface scattering,” Chinese Physics Letters, vol. 19, no. 11, 2002.
[9]	N. S. Tezel, “Electromagnetic scattering by anisotropic inhomogeneous impedance cylinder of arbitrary shape using physical optics,” Microwave and Optical Technology Letters, vol. 5, no. 4, pp.663-667, Oct 2008.
[10]	Y. Altuncu, A. Yapar and I. Akduman, “Numerical computation of the Green's function of a layered media with rough interfaces,” Microw. Opt. Technol. Lett., vol. 49, no. 5, pp. 1204-1209, May 2007.
[11]	S. Yildiz, Y.Altuncu, A. Yapar, I. Akduman, “ On the scattering of electromagnetic waves by periodic rough dielectric surfaces: a boa solution ,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 9, pp.2599-2606, Sep 2008.
[12]	R. R. Boix, A. L. Fructos, and F. Mesa, “Closed-form uniform asymptotic expansions of Green’s functions in layered media,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 9, pp. 2934–2945, Sep. 2010.
[13]	H. Zamani, A. Tavakoli, and M. Dehmollaian, “Scattering from layered rough surfaces: analytical and numerical investigations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, pp. 3685-3696, June. 2016.
[14]	G. Franceschetti, A. Iodice, D. Riccio, and G. Ruello, “Fractal surfaces and electromagnetic extended boundary conditions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 5, pp. 1018–1031, May 2002.
[15]	A. Boag and Y. Leviatan, “Analysis of two-dimensional electromagnetic scattering from nonplanar periodic surface using a strip current model,” IEEE Transactions on Antennas and Propagation., vol. 37, no. 11, pp. 1437–1446, Nov. 1989.
[16]	M. A. Demir, J. T. Johnson, and T. J. Zajdel, “A study of the fourthorder small perturbation method for scattering from two-layer rough surfaces,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 9, pp. 3374–3382, Sep. 2012.
[17]	A. Yapar, O. Ozdemir, H. Sahinturk and I. Akduman, “A Newton method for the reconstruction of perfectly conducting slightly rough surface profiles,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 1, pp.275-279, Jan 2006.
[18]	I. Akduman, R. Kress and A. Yapar, “Iterative reconstruction of dielectric rough surface profiles at fixed frequency,” Inverse Problems, vol. 22, no. 3, 2006.
[19]	T. Gurbuz, B. Aslanyurek, E. P. Karabulut and I. Akduman, “An efficient nonlinear imaging approach for dielectric objects buried under a rough surface,” IEEE Transactions On Geoscience and Remote Sensing, vol. 52, no. 5, pp.3013-3022, May 2014.
[20]	M. Shamsaddini, A. Tavakoli and P. Dehkhoda, “Inverse electromagnetic scattering of a dielectric cylinder buried below a slightly rough surface using a new intelligence approach,” Iranian Conference on Electrical Engineering (ICEE), May 2015.
[21]	D. G. Roy and S. Mudaliar, “Domain derivatives in dielectric rough surface scattering,IEEE Transactions on Antennas and Propagation, vol. 63, pp. 4486-4495, Oct. 2015.
[22]	M. Lambert, D. Lesselier and B. J. Kooij, “The retrieval of a buried cylindrical obstacle by a constrained modified gradient method in the H-polarization case and for Maxwellian materials,” Inv. Prob., vol. 14, no. 5, pp. 1265–1283, Oct. 1998.
[23]	A. Dubois, K. Belkebir and M. Saillard, “Localization and characterization of two-dimensional targets buried in a cluttered environment,” Inv. Prob., vol. 20, no. 6, pp. S63–S79, Dec. 2004.
[24]	O. Ozdemir and H. Haddar, “Linearized cauchy data inversion method for two-dimensional buried target imaging,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 6, pp. 3244-3251, June 2013.
[25]	M. Zoofaghari, A.Tavakoli, and M. Dehmollaian, “Reconstruction of concealed objects in a corrugated wall with a smoothly varying roughness using the linear sampling method,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 6, pp. 3589-3598, June 2016.
[26]	R. Persico, R. Bernini, and F. Soldovieri, “The role of the measurement configuration in inverse scattering from buried objects under the born approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[27]	L. Guo and A. M. Abbosh, “Microwave imaging of nonsparse domains using born iterative method with wavelet transform and block sparse Bayesian learning,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 4877-4888, Nov. 2015.
[28]	H. Zheng, C. Wang and E. Li, “Modification of enhanced distorted born iterative method for the 2D inverse problem,” IET Microwaves, Antennas & Propagation, vol. 10, no. 10, pp. 1036-1042, Mar. 2016.
[29]	L. D. Donato, R. Palmeri, G. Sorbello, T. Isernia and L. Crocco, “A new linear distorted-Wave inversion method for microwave imaging via virtual experiments,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 8, pp. 2478-2487, Aug. 2016.
[30]	A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
[31]	R. A. Wildman and D. S. Weile, “Greedy search and a hybrid local optimization/genetic algorithm for tree-based inverse scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[32]	A. Saeedfar and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm,” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[33]	T. Moriyama, Z. Meng and T. Takenaka, “Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection,” Microwave and Optical Technology Letters, vol. 53, no. 2, pp.438-442, 2011.
[34]	B.Y. Wu and X.Q. Sheng, “A complex image reduction technique using genetic algorithm for the MoM solution of half-space MPIE,” IEEE Transaction on Antennas and Propagation, vol. 63, no. 8, pp.3727-3731, Aug. 2015.
[35]	K. A. Michalski, “Electromagnetic imaging of circular-cylindrical conductors and tunnels using a differential evolution algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
[36]	A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, No. 1, pp. 116–125, Jan. 2006.
[37]	I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
[38]	A. Semnani, I. T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[39]	M. Dehmollaian, “Through-wall shape reconstruction and wall parameters estimation using differential evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, No. 2, pp.201-205, 2011.
[40]	M. A. Bouzan,and M. Dehmollaian, “Buried object adaptive shape reconstruction and ground parameters estimation using differential evolution,” IET Microwaves, Antennas & Propagation, Vol. 8, no. 3,pp.157-165, May 2013.
[41]	Y. Wan, C.-Y. Yu, C.-H. Sun, and C.-C. Chiu, “The reconstruction of time domain through-wall imaging for a metallic cylinder,” The Imaging Science Journal, Vol. 63, no. 2,pp.81-84, Oct. 2014.
[42]	M. Donelli and A. Massa, “Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
[43]	T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects,” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
[44]	M. Donelli, G. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
[45]	G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[46]	A. Semnani and M. Kamyab, “An enhanced hybrid method for solving inverse scattering problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[47]	M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[48]	C. C. Chiu, C. H. Sun, C. L. Li, and C. H. Huang, “Comparative Study of Some Population-Based Optimization Algorithms on Inverse Scattering of a Two-Dimensional Perfectly Conducting Cylinder in Dielectric Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, Vol 51, No. 4, pp.2302-2315, Apr. 2013.
[49]	Y. T. Cheng, C. C. Chiu, S. P. Chang and J. C. Hsu, “Comparison of particle swarm optimization and self-adaptive dynamic differential evolution for the imaging of a periodic conductor,” International Journal of Applied Electromagnetics and Mechanics, Vol 46, No. 1, pp.69-79, Jan. 2014.
[50]	C. H. Sun, C. C. Chiu, M. H. Ho and C. L. Li, “Comparison of Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution for Buried Metallic Cylinder,” Research in Nondestructive Evaluation, Vol 24, No. 1, pp.35-50, Apr. 2013.
[51]	C. H. Sun and C. C. Chiu, “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol 23, No. 5, pp.579-585, Sep. 2013.
[52]	Y. T. Cheng, C. C. Chiu, S. P. Chang and J. C. Hsu, “Microwave imaging for half-space imperfect conductors,” Nondestructive Testing and Evaluation, Vol 30, No. 1, pp.49-62, Jan. 2015.
[53]	Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints,” IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[54]	C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder,” International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261, Apr. 2011.
[55]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信