§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3107201416044700
DOI 10.6846/TKU.2014.01283
論文名稱(中文) 應用二氧化矽奈米顆粒沉積於蒸發器之沸騰熱傳實驗研究
論文名稱(英文) Experimental Investigations of Boiling Heat Transfer in an Evaporator Using Silica Nanoparticle Coatings
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 黃俊賢
研究生(英文) Chun-Hsien Huang
學號 899370075
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2014-07-10
論文頁數 109頁
口試委員 指導教授 - 康尚文
委員 - 楊錫杭
委員 - 陳育堂
委員 - 康尚文
委員 - 楊龍杰
委員 - 林玉興
關鍵字(中) 二氧化矽奈米顆粒
沸騰熱傳
蒸發器
熱性能
沉積結構
關鍵字(英) Silica nanoparticle
Boiling heat transfer
Evaporator
Thermal performance
Coating structures
第三語言關鍵字
學科別分類
中文摘要
本文以將二氧化矽奈米顆粒製作沉積層進行沸騰熱傳研究,以分析沸騰過程中奈米顆粒結構對熱傳性能及汽泡生成與成長的影響。文中將二氧化矽顆粒以物理溶膠沉積於蒸發底板上方,二氧化矽顆粒分別為多孔性奈米顆粒(MCM-41)、無孔奈米顆粒(SiO2-S)及微米顆粒(SiO2-L)。MCM-41及SiO2-S結構具有良好的親水性,其接觸角皆為10°以內且液滴迅速擴散,並比較TEOS溶膠結構、平板結構及二氧化矽顆粒的熱傳性能,
分別以水位調節虹吸熱管與迴路式虹吸熱管蒸發器於一大氣壓與負壓情況下進行實驗研究,工作流體為純水,分別探討其沸騰熱傳由自然對流熱傳、核沸騰、薄膜蒸發到燒乾及池沸騰狀態的熱傳性能與汽泡生成情形。
實驗結果顯示,二氧化矽奈米顆粒結構具有較大的熱通量,其因具有良好的表面親水濕潤性,在一大氣壓及過熱度為20 oC時,SiO2-S結構的最大熱通量為677 kW/cm2,是平板結構的2.4倍。在負壓及過熱度為30 oC時,SiO2-S結構熱通量為2391 kW/cm2是平板結構的4倍。最大熱通量及最小蒸發熱阻依序為SiO2-S、SiO2-L、MCM-41、TEOS及平板結構。因此奈米顆粒沉積層結構具有良好的熱傳性能,但MCM-41顆粒的熱性能較差於SiO2-S及SiO2-L顆粒,是因為顆粒本身較難以沉積於加熱表面上方所導致。
英文摘要
This study investigated the effects of silica nanoparticle structures on boiling heat transfer at evaporator. The experiment reveals the effect of thermal performance and bubble growth by nanoparticle structures. The nanoparticle coated structures were used in heating surface of evaporator, and the particles are mesoporous silica nanoparticle (MSM-41), silica nanoparticle (SiO2-S) and silica mircoparticle (SiO2-L), respectively. Comparison of TEOS sol and plat structures are thermal performance with silica particles. The MCM-41 and SiO2-S coated structures contact angle were less than 10 and droplets expanding very fast.
The experimental method of using level adjustable thermosyphon (LAT) and two phase loop thermosyphon (TPLT) are researched of boiling heat transfer in atmospheric pressure and sub-atmospheric pressure, respectively. The working fluid is DI water. During a cycle of experiment, the primary heat transfer mechanisms of LAT is sequentially from natural convection, nucleate boiling, thin-film evaporation and dryout in atmospheric pressure, as LAT and TPLT were experimental investigated in pool boiling.
The experimental results show that silica nanoparticle structures have a higher heat flux, because they have better surface wettability of hydrophilic. In the atmospheric pressure and surface superheat is 20 oC, the SiO2-S structure heat flux is 677 kW/cm2. SiO2-S structure heat flux is 2.4 times of plat structure. In the sub-atmospheric pressure and surface superheat is 30oC, the SiO2-S structure heat flux is 2391 kW/cm2. SiO2-S structure heat flux is four times of plat structure. The maximum heat flux and minimum thermal resistance in turn were SiO2-S, SiO2-L, MCM-41, TEOS and plat structures. Therefore, nanoparticles coated structures has better thermal performance. The thermal performance of MCM-41 is poor than SiO2-S and SiO2-L, because it is difficult to coated on the heating surface.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VI
表目錄	IX
符號說明	X

第一章 緒論	1
1.1 研究背景	1
1.2 文獻回顧	3
1.2.1 蒸發器熱傳性能研究	3
1.2.2 沸騰增強結構	6
1.2.3 奈米顆粒流體與沉積	8
1.3 研究動機與目的	12
第二章 理論分析	13
2.1 成核理論	13
2.1.1 成核址	13
2.1.2 過熱度	15
2.1.3 接觸角	15
2.1.4 汽泡脫離	17
2.2 沸騰理論	18
2.2.1 參數影響	18
2.2.2 池沸騰	20
2.2.3 薄膜蒸發	23
第三章 多孔性二氧化矽奈米顆粒之沸騰熱傳	25
3.1 多孔性二氧化矽奈米顆粒簡介	25
3.2 多孔性二氧化矽奈米顆粒製程介紹與製作	26
3.3 熱傳性能實驗架設	29
3.3.1 實驗設置	29
3.3.2 實驗參數	38
3.3.3 誤差分析	42
3.4 結果討論	42
3.4.1蒸發底板表面結構之熱傳性能分析	43
3.4.2 蒸發底板表面結構之汽泡生成與成長情形	48
3.4.3 二氧化矽顆粒沉積層實驗前後改變	54
3.4.3 蒸發底板表面結構之池沸騰熱傳性能分析	57
第四章 二氧化矽奈米顆粒應用於迴路式虹吸熱管之沸騰熱傳	59
4.1迴路式虹吸熱管簡介	59
4.2熱傳性能實驗架設	60
4.2.1 實驗設置	61
4.2.2 實驗參數	66
4.2.3 誤差分析	68
4.3 結果與討論	68
4.3.1 蒸發底板表面結構於迴路式虹吸熱管之熱傳性能	69
4.3.2 二氧化矽沉積層實驗前後改變	75
第五章 總結	78

參考文獻	80

論文著述目錄	86

附錄 A多孔性二氧化矽奈米顆粒製作材料	87
附錄 B 蒸發底板沉積層於一大氣壓下之汽泡生成與成長過程	89
附錄 C迴路式虹吸熱管之飽和溫度量測值與飽和壓力換算關係	106

 
圖目錄
圖1.1 加熱表面溫度與汽泡生成關係	5
圖1.2 燒結結構內部薄膜蒸發預測示意及熱通量與熱阻關係	7
圖1.3 不同接觸角對加熱表面生成蒸汽汽泡尺寸及比例	11
圖2.1 成核過程	14
圖2.2 液珠與固體表面接觸角關係	16
圖2.3 表面濕潤性對汽泡接觸角影響 (a)無濕潤 (b)部分濕潤 (c)完全濕潤	17
圖2.4 各種不同增強沸騰表面結構	19
圖2.5 池沸騰機制	21
圖2.6 池沸騰區域加熱表面的蒸汽結構	22
圖2.7 池沸騰曲線	23
圖2.8 薄膜蒸發液面示意圖	24
圖3.1 多孔性材料MCM-41之M41S製作過程	27
圖3.2 多孔洞結構二氧化矽奈米顆粒MCM-41	28
圖3.3 多孔洞結構二氧化矽奈米顆粒MCM-41 (a)SEM (b)TEM (c)外觀示意圖	28
圖3.4水位調節示意圖	31
圖3.5水位調節虹吸熱管	31
圖3.6 水位調節虹吸熱管示意圖	33
圖3.7 溶膠凝膠法製程與產物	34
圖3.8 四種蒸發底板表面結構SEM (a)平板(b)MCM-41 (c)SiO2-S (d)SiO2-L	36
圖3.9 水位調節虹吸熱管溫度量測配置	38
圖3.10 二氧化矽奈米顆粒	40
圖3.11 銅質蒸發底板表面結構 (a)平板 (b)MCM-41 (c)SiO2-S (d)SiO2-L	40
圖3.12 蒸發底板表面結構接觸角與液滴擴散 (a)平板 (b)MCM-41 (c)SiO2-S (d)SiO2-L	41
圖3.13 沸騰熱傳之蒸發過程	43
圖3.14 四種結構之蒸發底板表面溫度 (a)50W (b)100W (c)150W (d)200W	45
圖3.15 四種結構之表面過熱度 (a)50W (b)100W (c)150W (d)200W	46
圖3.16 四種結構之蒸發熱阻 (a)50W (b)100W (c)150W (d)200W	47
圖3.17 平板結構汽泡生成與成長情形	50
圖3.18 MCM-41結構汽泡生成與成長情形	51
圖3.19 SiO2-S結構汽泡生成與成長情形	52
圖3.20 SiO2-L結構汽泡生成與成長情形	53
圖3.21 蒸發底板實驗前後對照 (a)平板 (b)MCM-41 (c)SiO2-S (d)SiO2-L	55
圖3.22 蒸發底板於實驗後之表面結構接觸角 (a)平板 (b)MCM-41 (c)SiO2-S (d)SiO2-L	56
圖3.23 五種結構之表面過熱度與熱通量關係	58
圖3.24 五種結構之實際輸入功率與蒸發熱阻關係	58
圖4.1 迴路式虹吸熱管示意圖	63
圖4.2 迴路式虹吸熱管	64
圖4.3 迴路式虹吸熱管	64
圖4.4 迴路式虹吸熱管溫度配置	65
圖4.5蒸發底板表面結構 (a)平板 (b)MCM-41 (c)SiO2-S (d)SiO2-L	66
圖4.6蒸發底板表面結構接觸角與液滴擴散(a)平板(b)TEOS(b)MCM-41(c)SiO2-S(d)SiO2-L	67
圖4.7 平板結構之迴路式虹吸熱管溫度分布	70
圖4.8 TEOS結構之迴路式虹吸熱管溫度分布	70
圖4.9 MCM-41結構之迴路式虹吸熱管溫度分布	71
圖4.10 SiO2-S結構之迴路式虹吸熱管溫度分布	71
圖4.11 SiO2-L結構之迴路式虹吸熱管溫度分布	72
圖4.12 五種結構之迴路式虹吸熱管內部壓力	72
圖4.13 五種結構實際輸入功率關係	73
圖4.14 五種結構之表面過熱度關係	73
圖4.15 五種結構之蒸發熱阻關係	74
圖4.16 五種結構之熱通量與過熱度關係	74
圖4.17 蒸發底板沉積層實驗前後對照 (a)平板 (b)MCM-41 (c)SiO2-S (d)SiO2-L	76
圖4.18 蒸發底板於實驗後之表面結構接觸角 (a)平板 (b)MCM-41 (c)SiO2-S (d)SiO2-L	77
附圖A.1 透明矽酸鈉混合溶液	88
附圖A.2透明界面活性劑混合溶液(MCM-41)	88
附圖A.3 MCM-41凝絮物混合溶液 (a)沉澱前 (b)沉澱後	88
附圖B.1 平板結構汽泡生成於輸入功率50W	90
附圖B.2 平板結構汽泡生成於輸入功率100W	91
附圖B.3 平板結構汽泡生成於輸入功率150W	92
附圖B.4 平板結構汽泡生成於輸入功率200W	93
附圖B.5 MCM-41結構汽泡生成於輸入功率50W	94
附圖B.6 MCM-41結構汽泡生成於輸入功率100W	95
附圖B.7 MCM-41結構汽泡生成於輸入功率150W	96
附圖B.8 MCM-41結構汽泡生成於輸入功率200W	97
附圖B.9 SiO2-S結構汽泡生成於輸入功率50W	98
附圖B.10 SiO2-S結構汽泡生成於輸入功率100W	99
附圖B.11 SiO2-S結構汽泡生成於輸入功率150W	100
附圖B.12 SiO2-S結構汽泡生成於輸入功率200W	101
附圖B.13 SiO2-L結構汽泡生成於輸入功率50W	102
附圖B.14 SiO2-L結構汽泡生成於輸入功率100W	103
附圖B.15 SiO2-L結構汽泡生成於輸入功率150W	104
附圖B.16 SiO2-L結構汽泡生成於輸入功率200W	105
附圖C.1 平板結構飽和溫度量測與壓力換算關係	107
附圖C.2 TEOS結構飽和溫度量測與壓力換算關係	107
附圖C.3 MCM-41結構飽和溫度量測與壓力換算關係	108
附圖C.4 SiO2-S結構飽和溫度量測與壓力換算關係	108
附圖C.5 SiO2-L結構飽和溫度量測與壓力換算關係	109



 
表目錄
表1.1 各類熱管應用不同類種類奈米流體之性能研究(2003-2011)	10
表3.1 實驗條件參數	39
表3.2 蒸發底板表面結構於池沸騰與薄膜蒸發之表面過熱度	48
表3.3 蒸發底板二氧化矽奈米顆粒沉積層比較	56
表4.1 實驗條件參數	66
表4.2 蒸發底板二氧化矽奈米顆粒沉積層比較	77
參考文獻
[1]	A. Franco and S. Filippeschi, “Experimental analysis of closed loop two phase thermosyphon (CLTPT) for energy systems,” Experimental Thermal and Fluid Science, 51 (2013) 302–311.
[2]	A. Franco and S. Filippeschi, “Closed loop two-phase thermosyphon of small dimensions: a review of the experimental results,” Microgravity Science and Technology, 24(3) (2012) 165–179.
[3]	J. T. Cieślińskia and A. Fiuk, “Heat transfer characteristics of a two-phase thermosyphon heat exchanger,” Applied Thermal Engineering, 51 (1–2) (2013) 112–118.
[4]	T. F. Lin, et al., “Experimental investigation of geyser boiling in an annular two-phase closed thermosyphon,” International Journal of Heat and Mass transfer, 38 (2) (1995) 295–307.
[5]	R. Khodabandeh and R. Furberg, “Instability, heat transfer and flow regime in a two-phase flow thermosyphon loop at different diameter evaporator channel,” Applied Thermal Engineering, 30 (10) (2010) 1107–1114.
[6]	H. Imura and Y. Koito, “Heat transfer characteristics in two-phase closed thermosyphons with a tubular sinter,” Kagaku Kogaku Ronbunshu, 29 (5) (2003) 698–700.
[7]	R. Khodabandeh and R. Furberg, “Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop,” International Journal of Thermal Sciences, 49 (7) (2010) 1183–1192.
[8]	V. Tsoi, et al., “Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures,” Applied Thermal Engineering, 31 (14–15) (2011) 2556–2567.
[9]	S. W. Chang, et al, “Sub-atmospheric boiling heat transfer and thermal performance of two-phase loop thermosyphon,” Experimental Thermal and Fluid Science 39, (2012) 134–147.
[10]	S. W. Chang, K. F. Chiang and C. C. Huang, “Thermal performance of sub-atmospheric loop thermosyphon with and without enhanced boiling surface,” Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 28th 6188824, (2012) 45–51.
[11]	S. W. Chang and C. Y. Lin, “Thermal performance improvement with scale imprints over boiling surface of two-phase loop thermosyphon at sub-atmospheric conditions,” International Journal of Heat and Mass Transfer, 56 (1–2) (2013) 294-308.
[12]	S. W. Chang and C. Y. Lin, “Thermal performance of rotating two-phase thermosyphon disc,” International Journal of Heat and Mass Transfer, 62 (1) (2013) 40–54.
[13]	T. Inouea and M. Monde, “Operating limit of heat transport in two-phase thermosyphon with connecting pipe (heated surface temperature fluctuation and flow pattern),” International Journal of Heat and Mass Transfer, 52 (19–20) (2009) 4519–4524.
[14]	I. Khazaee, R. Hosseini and S.H. Noie, “Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon,” Applied Thermal Engineering, 30 (5) (2010) 406–412.
[15]	R. Pastuszko and M. E. Poniewski, “Semi-analytical approach to boiling heat fluxes calculation in subsurface horizontal and vertical tunnels,” International Journal of Thermal Sciences, 47 (9) (2008) 1169–1183.
[16]	M. A. Chan, C. R. Yap and K. C. Ng, “Pool boiling heat transfer of water on finned surfaces at near vacuum pressures,” Journal of Heat Transfer, 132 (3) (2010) 031501.
[17]	D. Cooke and S. G. Kandlikar, “Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels,” Journal of Heat Transfer, 133 (5) (2011) 052902.
[18]	R. Pastuszko, “Pool boiling for extended surfaces with narrow tunnels – Visualization and a simplified model,” Experimental Thermal and Fluid Science, 38 (2012) 149–164.
[19]	R. Pastuszko and R. Kaniowski, “Boiling visualization on vertical fins with tunnel-pore structures,” EPJ Web of Conferences, 25 (2012) 02019.
[20]	R. Pastuszko, “Visualization of pool boiling from complex surfaces with internal tunnels,” EPJ Web of Conferences, 25 (2012) 010067.
[21]	X. Dai, et al., “Micromembrane-enhanced capillary evaporation,” International Journal of Heat and Mass Transfer, 64 (2013) 1101–1108.
[22]	X. Ji, et al., “Pool boiling heat transfer on uniform and non-uniform porous coating surfaces,” Experimental Thermal and Fluid Science, 48 (2013) 198–212.
[23]	J. A. Weibel and S. V. Garimella, “Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks,” International Journal of Heat and Mass Transfer, 55 (13–14) (2012) 3498–3510.
[24]	Z. G. et al., “Pool boiling heat transfer on open-celled metallic foam sintered surface under saturation condition,” International Journal of Heat and Mass Transfer, 54 (17–18) (2011) 3856–3867.
[25]	Z. G. et al., “Experimental study of pool boiling heat transfer on horizontal metallic foam surface with crossing and single-directional V-shaped groove in saturated water,” International Journal of Multiphase Flow, 41 (2012) 44–55.
[26]	C. Li, G. P. Peterson and Y. Wang, “Evaporation/boiling in thin capillary wicks (I) - Wick thickness effects,” Journal of Heat Transfer, 128 (12) (2006) 1320–1328.
[27]	C. Li and G. P. Peterson, “Evaporation/boiling in thin capillary wicks (II) - Effects of volumetric porosity and mesh size,” Journal of Heat Transfer, 128 (12) (2006) 1312–1319.
[28]	C. Li, et al., “The visualization of thin film evaporation on thin micro sintered copper mesh screen,” 2008 Proceedings of the ASME Summer Heat Transfer Conference, 3 (2009) 645–650.
[29]	T. W. Davis and S. V. Garimella, “Thermal resistance measurement across a wick structure using a novel thermosyphon test chamber,” Experimental Heat Transfer, 21 (2) (2008) 143–154.
[30]	S. C. Wong, J. H. Liou and C. W. Chen, “Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes,” International Journal of Heat and Mass Transfer, 53 (2010) 3792–3798.
[31]	F. J. Hong, et al., “Evaporation/boiling heat transfer on capillary feed copper particle sintered porous wick at reduced pressure,” International Journal of Heat and Mass Transfer, 63 (2013) 389–400.
[32]	J. H. Liou, et al., “Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes,” International Journal of Heat and Mass Transfer, 53 (2010) 1498–1506.
[33]	S. C. Wong and C. W. Chen, “Visualization experiments for groove-wicked flat-plate heat pipes with various working fluids and powder-groove evaporator,” International Journal of Heat and Mass Transfer, 66 (2013) 396–403.
[34]	Y. Y. Tsai and C. H. Lee, “Effects of sintered powder structural thickness on thin-film evaporation heat transfer at low superheat levels,” Journal of Applied Physics, 113 (13) (2013) 134903.
[35]	Y. Y. Tsai and C. H. Lee, “Experimental study of evaporative heat transfer in sintered powder structures at low superheat levels,” Experimental Thermal and Fluid Science, 52 (2014) 230–238.
[36]	Y. Y. Tsai and C. H. Lee, “Effects of sintered structural parameters on reducing the superheat level in heat pipe evaporators,” International Journal of Thermal Sciences, 76 (2014) 225–234.
[37]	S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” International mechanical engineering congress and exhibition, 231 USA (1995) 99–105.
[38]	魏維瑲,奈米流體應用於熱管之熱傳分析,淡江大學機械與機電工程學系,碩士論文,2004。
[39]	Z. H. Liu and Y. Y. Li, “A new frontier of nanofluid research – Application of nanofluids in heat pipes,” International Journal of Heat and Mass Transfer, 55 (23–24) (2012) 6786–6797.
[40]	S. W. Kang et al., “Experimental investigation of silver nano-fluid on heat pipe thermal performance,” Applied Thermal Engineering, 26 (2006) 2377–2382.
[41]	Y. H. Lin, S. W. Kang and H. L. Chen, “Effect of silver nano-fluid on pulsating heat pipe thermal performance,” Applied Thermal Engineering, 28 (2008) 1312–1317.
[42]	S. W. Kang, et al., “Experimental investigation of nanofluids on sintered heat pipe thermal performance,” Applied Thermal Engineering, 29 (2009) 973–979.
[43]	Z. H. Liu and L. Liao, “Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling,” International Journal of Heat and Mass Transfer, 51 (9–10) (2008) 2593–2602.
[44]	X. F. Yang and Z. H. Liu, “Pool boiling heat transfer of functionalized nanofluid under sub-atmospheric pressures,” International Journal of Thermal Sciences, 50 (12) (2011) 2402–2412.
[45]	Y. J. Chen, P. Y. Wang and Z. H. Liu, “Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon,” International Journal of Heat and Mass Transfer, 56 (1–2) (2013) 59–68.
[46]	S. D. Park and I. C. Bang, “Experimental study of a universal CHF enhancement mechanism in nanofluids using hydrodynamic instability,” International Journal of Heat and Mass Transfer, 70 (2014) 844–850.
[47]	S. J. Kim, et al., “Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids,” Applied Physics Letters, 89 (15) (2006) 153107.
[48]	S. J. Kim, et al., “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” International Journal of Heat and Mass Transfer, 50 (19–20) (2007) 4105–4116.
[49]	H. Kim and M. Kim, “Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids,” Heat Mass Transfer, 45 (7) (2009) 991–998.
[50]	D. M. Vazquez and R. Kumar, “Surface effects of ribbon heaters on critical heat flux in nanofluid pool boiling,” International Communications in Heat and Mass Transfer, 41 (2013) 1–9.
[51]	C. C. Hsu and P. H. Chen, “Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings,” International Journal of Heat and Mass Transfer, 55 (13–14) (2012) 3713–3719.
[52]	E. Forrest, et al., “Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings,” International Journal of Heat and Mass Transfer, 53 (1–3) (2010) 58–67.
[53]	J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano, 2008, 2 (11), pp 2324–2330.
[54]	Z. Zou, et al., “Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery,” Langmuir, 29 (41) (2013) 12804–12810.
[55]	S. H. Wu, C. Y. Moua and H. P. Lin, “Synthesis of mesoporous silica nanoparticles,” Chem. Soc. Rev., 42 (2013) 3862–3875.
[56]	F. Kreith, and M.S. Bohn, Principle of heat transfer, Brooks Cole, USA, 2001.
[57]	潘欽,沸騰熱傳與雙相流,國立編譯館主編,俊傑書局印行,2001。
[58]	W. Fritz, “Berechnung des maximal vol.von dampfblasen,” Phys. Z., 36 (1935) 379–388. (Paper reviewed in Collier & Thome, 1994)
[59]	V. P. Cole and W. M. Rohsenow, “Correlation of bubble diameters for boiling of saturated liquids,” Chemical Engineering Progress Symposium Series, 65 (92) (1968) 211–213.
[60]	P. Berenson, “Transition boiling heat transfer from a horizontal surface,” Massachusetts Institute of Technology, Ph.D. Thesis, USA, 1960.
[61]	M. B. Pate, Z. H. Ayub, and J. Kohler, “Heat exchangers for the air-conditioning and refrigeration industry: state-of-the art design and technology,” Heat Transfer Engineering, 12 (3) (1991) 56–70.
[62]	K. Nishikawa, et al., “Effect of the surface configuration on nucleate boiling heat transfer,” International Journal of Heat and Mass Transfer, 27 (9) (1984) 1559–1571.
[63]	R. F. Gaertner, “Photographic study of nucleate pool boiling on a horizontal surface,” Journal of Heat Transfer, 87 (1965) 17–29.
[64]	H. Wang, S. V. Garimella and J. Y. Murthy, “An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus,” International Journal of Heat and Mass Transfer, 51 (2008) 6317–6322.
[65]	J. S. Beck, et al., “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of the American Chemical Society, 114 (27) (1992) 10834-10843.
[66]	K. S. W. Sing, et al., “Reporting physisorption data for gas/solid systems - with special reference to the determination of surface area and porosity,” Pure and Applied Chemistry, 57 (1985) 603–619.
[67]	王書駿,MCM-41孔徑控制之研究,國立中央大學化學工程與材料工程研究所碩士論文,2005。
[68]	C. J. Brinker and G. W. Scherer, Sol-Gel Science: The physics and chemistry of sol-gel processing, Academic Press, Verlag GmbH & Co. KGaA, Weinheim, 1990.
[69]	E. R. G. Eckert and R. M. Drake, Heat and mass transfer 2nd ed., McGraw-Hill, New York, 1959.
[70]	S. J. Kline and F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mechanical Engineering, (1953) 3–8.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信