淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3107201313235000
中文論文名稱 粒狀氫氧化鐵去除水中鉬之研究
英文論文名稱 Removal of molybdenum from water by granular ferric hydroxide
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 連思琦
研究生英文姓名 Szu-Chi Lien
學號 600480270
學位類別 碩士
語文別 中文
口試日期 2013-06-13
論文頁數 65頁
口試委員 指導教授-康世芳
委員-王根樹
委員-李柏青
中文關鍵字   吸附  粒狀氫氧化鐵  等溫吸附  動力吸附 
英文關鍵字 molybdenum  adsorption  granular ferric hydroxide  Freundlich isotherm  adsorption kinetic  competitive anions 
學科別分類 學科別應用科學環境工程
中文摘要 台灣環保署於2008年增訂飲用水水質標準管制鉬0.07 mg/L,本研究評估粒狀氫氧化鐵(GFH)吸附去除水中鉬(Mo)。以ICP-MS分析級(NH4)2MoO4藥劑配製含Mo水樣,操作參數為GFH添加量、pH、Mo初始濃度、接觸時間、溫度及競爭離子(氯鹽、硝酸鹽、硫酸鹽、磷酸鹽),研究目的為探討:(1)探討操作參數對GFH吸附Mo之影響、(2)GFH吸附Mo之等溫吸附、及(3) GFH吸附Mo之動力吸附。實驗採批次式等溫吸附與動力吸附實驗。
研究結果顯示GFH吸附劑去除Mo可達80%以上,但粉末活性碳與粉末活性鋁去除Mo低於25%,故本研究選擇GFH為吸附劑。GFH表面等電點pH為7.0,吸附Mo之最適pH範圍為4-7,其鉬吸附量為pH 9-10之約5倍。相同GFH添加量,Mo初始濃度越高則對Mo吸附量越大,最大吸附量為25 mg/g;相同Mo初始濃度下,GFH添加量越高,每單位GFH對Mo之吸附量越低。溫度對GFH吸附Mo之效果依序為45℃>25℃>10℃。競爭離子以磷酸鹽對GFH吸附Mo影響效果最為顯著,氯鹽、硝酸鹽、硫酸鹽則無顯著影響。此外,GFH吸附Mo可遵循Freundlich等溫吸附式。吸附強度n值大於1,屬於自發性反應;n值隨Mo初始濃度及溫度增加而增加。動力吸附可遵循Lagergern二階(Pseudo-second-order)動力吸附模式。二階動力常數k2值隨GFH添加量增加呈線性增加,但隨Mo初始濃度增加而減小。
英文摘要 The Taiwan Environmental Protection Agency enforced molybdenum regulation of 0.07 mg/L in drinking water quality standards in 2008. This study evaluates the adsorption of molybdenum (Mo) by granular ferric hydroxide (GFH). All experiments are conducted by batch isothermal and kinetic adsorption methods. The experimental parameters include type and dosage of GFH, pH, initial Mo concentration, contact time, temperature and competitive anions. Moreover, the Mo-containing water sample is prepared from (NH4)2MoO4 ICP-MS analytical-grade solution. The purpose of this study are to investigate (1) the effect of experimental parameters on the adsorption of Mo by GFH, (2) the isothermal adsorption of Mo by GFH, and (3) kinetic adsorption of Mo by GFH.
The results show that the removal of Mo could reach more than 80% by GFH, in contrast, it was less than 25% by both powdered activated carbon and powdered activated aluminum. Thus, GFH was selected as an adsorbent for adsorption of Mo in this study. The isoelectric point of GFH surface was 7.0. The optimum pH for GFH adsorption of Mo ranged from 4 to 7 and the amount of adsorbed Mo is about 5 times as that at pH 9-10. For the same GFH dosage, the amount of adsorbed Mo increased with increasing initial concentration of Mo and the maximum adsorption capacity reached to 25 mg-Mo/g-GFH. However, it decreased with increasing GFH dosage for the same initial concentration of Mo. The order of adsorption efficiency by temperature was 45oC>25oC >10oC. The effect of PO43- on the adsorption of Mo was observed to be stronger than that of Cl-, NO3-, SO42-. Furthermore, the adsorption data fitted the Freundlich isotherm model well. The n value in Freundlich isotherm model was increased with increasing both initial concentration of Mo and temperature. The kinetic adsorption followed the Lagergern pseudo-second-order kinetics. The adsorption rate constant, k2 value increased linearly with increasing GFH dosage, while it decreased with increasing initial concentration of Mo.
論文目次 目錄
目錄 I
表目錄 IV
圖目錄 V
第一章 前言 1
1-1研究背景 1
1-2研究目的 2
第二章 文獻回顧 3
2-1鉬之性質與危害 3
2-1-1產生來源 3
2-1-2鉬的水化特性 3
2-1-3毒理特性 4
2-1-4 立法管制 5
2-2吸附法去除鉬之介紹 6
2-2-1活性碳吸附 6
2-2-2活性鋁吸附 8
2-2-3其他吸附劑吸附 9
2-2-4影響吸附法之性質 9
2-3氫氧化鐵之介紹與應用 10
2-3-1氫氧化鐵之介紹 10
2-3-2氫氧化鐵之性質 10
2-3-3氫氧化鐵之應用 11
2-4吸附理論 13
2-4-1吸附原理 13
2-4-2等溫吸附模式 14
2-4-3動力吸附模式 16
2-4-4孔隙擴散模式 18
第三章 研究方法與材料 19
3-1實驗材料及設備 19
3-1-1人工地下水 19
3-1-2吸附劑介紹 19
3-1-3實驗藥品 19
3-1-4實驗設備 20
3-2吸附實驗 20
3-2-1等溫吸附實驗 21
3-2-2吸附動力實驗 21
3-2-3競爭吸附實驗 21
3-3水質分析 21
3-4界達電位(Zeta potencial)的量測 24
第四章 結果與討論 25
4-1 吸附劑之選擇 25
4-1-1吸附劑種類對Mo殘留率之影響 25
4-1-2吸附劑對Mo吸附量之比較 26
4-2 pH對吸附Mo之影響 28
4-2-1 GFH之界達電位量測 28
4-2-2 pH對Mo吸附之影響 28
4-2-3 pH對Mo吸附量之影響 30
4-3 Mo初始濃度對吸附Mo之影響 32
4-4接觸時間對吸附Mo之影響 34
4-4-1 初始濃度對吸附Mo接觸時間之影響 34
4-4-2 GFH添加量對吸附Mo接觸時間之影響 36
4-4-3 pH對吸附Mo接觸時間之影響 39
4-5 溫度對吸附Mo之影響 41
4-6 競爭離子對吸附Mo之影響 43
4-7 Mo之Freudlich等溫吸附 44
4-7-1初始濃度對GFH等溫吸附之影響 44
4-7-2溫度對GFH等溫吸附之影響 46
4-7-3 pH對GFH等溫吸附之影響 47
4-8 Mo之動力吸附 49
4-8-1 Lagergren二階吸附 49
4-8-1-1初始濃度對吸附Mo二階吸附之影響 49
4-8-1-2 GFH添加量對吸附Mo二階吸附之影響 50
4-8-1-3 pH對吸附Mo二階吸附之影響 54
4-8-2 孔隙擴散模式 (Intraparticle diffusion) 55
4-8-2-1初始濃度對吸附Mo孔隙擴散模式之影響 55
4-8-2-2 GFH添加量對吸附Mo孔隙擴散模式之影響 56
4-8-2-3 pH對吸附Mo孔隙擴散模式之影響 59
第五章 結論 60
參考文獻 61

表目錄
表2-1 各國飲用水水質標準鉬管制現況 (單位:mg/L) 5
表2-2 氫氧化鐵GFH參數性質表 11
表3-1 感應耦合電漿質譜儀操作參數 22
表4-1 初始濃度對GFH吸附Mo之等溫吸附係數 45
表4-3 pH對GFH等溫吸附Mo之等溫吸附係數 48
表4-4 初始濃度對吸附Mo之二階動力吸附係數 50
表4-5 初始濃度對吸附Mo之二階動力吸附係數 51
表4-6 GFH添加量對吸附Mo之二階動力吸附係數 52
表4-7 pH對吸附Mo之二階動力吸附係數 54
表4-8 初始濃度對吸附Mo之孔隙擴散吸附係數 56
表4-9 GFH添加量對吸附Mo之孔隙擴散吸附係數 57
表4-10 GFH添加量對吸附Mo之孔隙擴散吸附係數 58
表4-11 pH對吸附Mo之孔隙擴散吸附係數 59



圖目錄
圖2-1 鉬物種與pH之平衡分佈圖 (C=10-6 M) 4
圖4-1 吸附劑種類對吸附Mo之影響 26
圖4-2 吸附劑種類對吸附Mo吸附量之影響 27
圖4-3-a pH對GFH吸附Mo去除率之影響 29
圖4-3-b pH對GFH吸附殘留率之影響 29
圖4-4-a pH對GFH吸附Mo吸附量之影響 31
圖4-4-b pH對GFH吸附Mo吸附量之影響 31
圖4-5 初始濃度對吸附Mo之殘餘率影響 33
圖4-6 初始濃度對吸附Mo之吸附量影響 33
圖4-7 初始濃度對吸附Mo接觸時間之殘餘率影響 35
圖4-8 初始濃度對吸附Mo接觸時間之吸附量影響 35
圖4-9 GFH添加量對吸附Mo接觸時間之殘餘率影響 36
圖4-10 GFH添加量對吸附Mo接觸時間之吸附量影響 37
圖4-11 GFH添加量對吸附Mo接觸時間之殘餘率影響 38
圖4-12 GFH添加量對吸附Mo接觸時間之吸附量影響 38
圖4-13 pH對吸附Mo接觸時間之殘餘率影響 39
圖4-14 pH對吸附Mo接觸時間之吸附量影響 40
圖4-15 溫度對GFH吸附Mo殘留量之影響 42
圖4-16 溫度對GFH吸附Mo之影響 42
圖4-17 競爭離子對於GFH吸附Mo之去除率影響 43
圖4-18 初始濃度對GFH吸附Mo之Freundlich等溫吸附圖 45
圖4-19 溫度對GFH吸附Mo之Freundlich等溫吸附圖 46
圖4-20 pH對GFH等溫吸附之Freundlich等溫吸附圖 48
圖4-21 初始濃度對吸附Mo之二階動力吸附圖 50
圖4-22 GFH添加量對吸附Mo之二階動力吸附圖 51
圖4-23 GFH添加量對吸附Mo之二階動力吸附圖 52
圖4-24 GFH添加量對二階動力吸附係數K2之影響 53
圖4-25 pH對吸附Mo之二階動力吸附圖 54
圖4-26 初始濃度對吸附Mo之孔隙擴散吸附圖 56
圖4-27 GFH添加量對吸附Mo之孔隙擴散吸附圖 57
圖4-28 GFH添加量對吸附Mo之孔隙擴散吸附圖 58
圖4-29 pH對吸附Mo之孔隙擴散吸附圖 59

參考文獻 參考文獻
1. Atia, A.A., Donia, A.M. and Awed, H.A. (2008) Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. Journal of Hazardous Materials 155, 100-108.
2. Afkhami, A., Madrakian, T.and Amini A. (2009) Mo (VI) and W (VI) removal from water samples by acid-treated high area carbon cloth. Desalination 243, p.258-264
3. Bostick, B.C., Fendorf, S., Helz, G.R. (2003) Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). Environ. Sci. Technol 37, 285–291.
4. Banerjee, K., Amy, G.L., Prevost, M., Nour, S., Jekel, M., Gallagher, P.M. and Blumenschein, C.D. (2008) Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water research 42, 3371-3378.
5. Bhatnagar, A., Choi, Y., Yoon, Y., Shin, Y., Jeon, B.H. and Kang, J.W. (2009) Bromate removal from water by granular ferric hydroxide (GFH). Journal of hazardous materials 170, 134-140.
6. Bishnoi, N.R., Bajaj, M., Sharma, N. and Gupta, A.(2004) Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresource Technology 91, 305-307.
7. Chappell, W.R., Meglen, R.R., Moure-Eraso, R., Solomons, C.C., Walravens, T.A. and Winston, P.W. (1979) Human health effects of molybdenum in drinking water. US Environmental Protection Agency, EPA-600A-679-006.
8. Chan, P. C., Herbert, R. A., Roycroft, J. H., Haseman, J. K. Grumbein, S. L., Miller, R. A.and Chou B. J. (1998) Lung Tumor Induction by Inhalation Exposure to Molybdenum Trioxide in Rats and Mice. Toxicological Sciences 45, 58–65.
9. Chingombe, P., Saha, B., Wakeman, R.J. (2005) Surface modification and characterization of a coal-based activated carbon. Carbon 43, 3132–3143.
10. Driehaus, W. (2002) Arsenic removal - Experience with the GEHR process in Germany, 275-280.
11. El-Moselhy, M.M., Sengupta, A.K. and Smith, R. (2011) Carminic acid modified anion exchanger for the removal and preconcentration of Mo(VI) from wastewater. Journal of Hazardous Materials 185, 442-446.
12. Gustafsson, J.P. (2003). Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol 200, 105–115.
13. Helz, G.R., Vorlicek, T.P., Kahn, M.D. (2004). Molybdenum scavenging by iron monosulfide. Environ. Sci. Technol 38, 4263–4268.
14. Huang, W.J. and Cheng, Y.L. (2008) Effect of characteristics of activated carbon on removal of bromated. Separation and Purification Technology 59, 101–107.
15. Holl, W. H. (2002). Elimination of Arsenic from Drinking Water by Means of a Selective Adsorbent. Drinking Water Quality Management and Treatment Technology 8, 27-29.
16. Kumar, E., Bhatnagar, A., Choi, J.A., Kumar, U., Min, B., Kim, Y., Song, H., Paeng, K.J., Jung, Y.M., Abou-Shanab, R.A.I. and Jeon, B.H. (2009) Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Res 3 , 490–498
17. Kumar, E., Bhatnagar, A., Choi, J.A., Kumar, U., Min, B., Kim, Y., Song, H., Paeng, K.J., Jung, Y.M., Abou-Shanab, R.A.I. and Jeon, B.H. (2010) Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH). Chemical Engineering Journal 159, 84-90.
18. Lin, T.F. and Wu, J.K. (2001) Adsorption of asenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Research 35, 2049-2057.
19. Lian, J., Xu, S., Chang, N.B., Han, C. and Liu, J. (2013) Removal of Molybdenum (VI) from Mine Tailing Effluents with the Aid of Loessial Soil and Slag Waste. Enviromental engineering science 30, 213-220.
20. Mohan, D. and Pittman Jr, C.U. (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials 137, 762-811.
21. Momčilović, M., Purenović, M., Bojić, A., Zarubica, A. and Ranđelović, M. (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276, 53-59.
22. Namasivayam, C., Sangeetha, D. (2006) Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresource Technology 97, 1194–1200.
23. Saha, B., Bains, R. and Greenwood, F. (2007) Physicochemical Characterization of Granular Ferric Hydroxide (GFH) for Arsenic(V) Sorption from Water. Separation Science and Technology 40:14, 2909-2932
24. Sperlich, A. (2010) Phosphate adsorption onto granular ferric hydroxide (GFH) for wastewater reuse. Doctoral dissertation, Department of environmental technology, Technische Universitat Berlin, Germany.
25. Tangri, S.K., Suri, A.K., Gupta, C.K (1998) Development of solvent extraction processes for production of high purity oxides of molybdenum, tungsten and vanadium. Transactions of the Indian Institute of Metals 5, 27–39.
26. Thirunavukkarasu, O.S., Viraraghavan, T. and Subramanian, K.S. (2003) Arsenic removal from drinking water using granular ferric hydroxide. Water SA 29, 161-170.
27. Tripathy, S.S., Bersillon, J.L. Gopal, K. (2006) Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Separation and Purification Technology 50, 310–317
28. Verbinnen, B., Block, C., Hannes, D., Lievens, P., Vaclavikova, M., Stefusova, K., Gallios, G and Vandecasteele, C. (2012) Removal of Molybdate Anions from Water by Adsorption on Zeolite-Supported Magnetite. Water Environment Research 84(9).
29. W.J. Huang, Y.L. Cheng. (2008) Effect of characteristics of activated carbon on removal of bromate. Separation and Purification Technology 59, 101–107.
30. Wu, C.H., Lo, S.L., Lin, C.F. (2000) Competitive adsorption of molybdate, chromate, sulfate, selenate, and selenite on γ-Al2O3. Colloid Surf. A 166, 251–259.
31. Wu, C.H., Lo, S.L., Lin, C.F. and Kuo, C.Y. (2001) Modeling Competitive Adsorption of Molybdate, Sulfate, and Selenate on gamma-Al2O3 by the Triple-Layer Model. J Colloid Interface Sci 233, 259-264.
32. WHO. (2003) Molybdenum in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality.
33. WHO. (2011) Guidelines for Drinking-water quality.
34. Xu, Y.H., Ohki, A. and Maeda, S. (2001) Adsorption and removal of antimony from aqueous solution by an activated alumina. 1. Adsorption capacity of adsorbent and effect of process variables. Toxicological and Environmental Chemistry 80, 133-144.
35. Yuan, B. and Bartkiewicz, B. (2009) The removal of Cr(VI) from the aqueous solution by granular ferric hydroxide (GFH). Archives of Environmental Protection 35, 115-123.
36. 蘇憶安(2012) 化學混凝去除水中鉬、銦之研究,淡江大學水資源及環境工程研究所碩士論文。
37. 黃任偉(2002) 粒狀氫氧化鐵吸附地下水中砷之研究,國立成功大學環境工 程學系碩士論文。
38. 劉鳳軍,賀加雙,楊自軍,徐朋朋,馬德剛,樂強 (2009) 小鼠Mo中毒的毒性試驗,動物醫學進展,第02期。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信