淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3107201212495800
中文論文名稱 太陽能驅動薄膜蒸餾海水淡化系統之設計與可操作度分析
英文論文名稱 Design and Operability Analysis of Solar Driven Membrane Distillation in Desalination Systems
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 張舜傑
研究生英文姓名 Shun-Chieh Chang
學號 600400120
學位類別 碩士
語文別 中文
口試日期 2012-07-12
論文頁數 138頁
口試委員 指導教授-何啟東
委員-陳逸航
委員-錢義隆
委員-王國彬
委員-張煖
中文關鍵字 直接接觸式薄膜(DCMD)  氣隔式薄膜(AGMD)  海水淡化  ACM軟體  最適化設計  年總成本  可操作性 
英文關鍵字 Direct contact membrane distillation  Air gap membrane distillation  Desalination  ACM software  Optimal design  TAC  Operability 
學科別分類
中文摘要 本論文提出一種系統方法來研究太陽能驅動薄膜蒸餾海水淡化系統的設計與可操作性之間的相互作用。其探討直接接觸式薄膜蒸餾(DCMD)與氣隔式薄膜蒸餾(AGMD)進行模組分析。藉由Aspen Custom Molder(ACM)平台,建立各單元模式與運算出年總成本(TAC)函數。利用自由度(DOF)分析,尋找出最適化變數並在不同日照量情況下,產能維持固定,得到最小年總成本。在穩態分析結果,DCMD系統比AGMD系統需要極大太陽能集熱器,導致AGMD系統的TAC較便宜。運用兩個儲熱槽做替換來克服白天與夜晚的控制操作,DCMD和AGMD的最適化設計發現操作範圍皆很小,其皆受到集熱器溫度限制。為了擴大兩系統可操作範圍,將集熱器出口溫度限制條件從95℃改變至75℃,其可增加操作範圍但相對提高成本。最後進行動態模式驗證,不管晴天或是多雲系統皆能穩定的輸出淡水產量。
英文摘要 In this work, we propose a systematic method to study the interaction between design and operability of solar heated membrane distillation seawater desalination systems. Direct contact membrane distillation (DCMD) and air gap membrane distillation (AGMD) modules were explored. Aspen Custom Molder (ACM) platform was used to model and simulate each unit of the system and establish the cost function for counting total annual cost (TAC). From Design degree of freedom (DOF) analysis, design parameters were investigated and used as optimization variables to find the minimum TAC with fixed distillate water production rate by varying the solar energy density. The steady-state simulation result shows the solar driven AGMD desalination systems give the cheaper TAC compared to DCMD ones because of the need for larger size solar collectors for DCMD systems. A secondary hot water storage tank was used and a control structure was proposed to overcome day and night operation. The optimal design for DCMD and AGMD gave a very small operating range due to temperature constrain in effluent stream of solar collectors. In order to widen the operability range of two different plants, the effluent temperature constrains changed from 95 ℃ to 75 ℃. It enlarged the operability range but gave a higher TAC. Finally, the dynamic control results show and verify that the pure water production can be maintained at a very stable level in sunny or cloudy weather by two systems.
論文目次 中文摘要 I
英文摘要 II
目錄 IV
圖目錄 IX
表目錄 XIV
第一章、緒論 1
1.1 前言 1
1.2 文獻回顧 8
1.3 研究動機與方向 11
1.4論文組織與架構 12
第二章理論分析 14
2.1 穩態分析 (Base case) 14
2.1.1 直接接觸式薄膜蒸餾(DCMD)系統描述 14
2.1.2 氣隔式薄膜蒸餾(AGMD)系統描述 16
2.2 理論模式建立 17
2.2.1 太陽能集熱器模組及數學模式建立 18
2.2.2 儲熱槽模組及數學模式 21
2.2.3 熱交換器模組及數學模式 22
2.2.4 直接接觸式薄膜模組 (DCMD) 24
2.2.4.1 數學模式 24
2.2.4.2 模式驗證 29
2.2.5 氣隔式薄膜模組 (AGMD)及數學模式 32
第三章、最適化設計 39
3.1 自由度分析 (Degree of freedom) 39
3.1.1 DCMD自由度分析 40
3.1.2 AGMD自由度分析 43
3.2 年總成本函數 45
3.3 各項單元經濟模組 46
3.3.1 設備成本 46
3.3.1.1 熱交換器 46
3.3.1.2 離心式泵 48
3.3.1.3 電加熱器 49
3.3.1.4 太陽能集熱器 50
3.3.1.5 薄膜 50
3.3.2 公用操作成本(Utility operation cost) 51
3.4 最適化目標函數與限制條件 52
3.4.1 DCMD目標函數與限制條件 52
3.4.2 AGMD目標函數與限制條件 53
3.5 最適化方法 54
3.6 最適化結果 55
3.6.1 DCMD最適化結果 55
3.6.2 AGMD最適化結果 68
3.7 不同型態最適化結果比較 77
第四章、控制系統 83
4.1 靈敏度分析 83
4.1.1 DCMD靈敏度 84
4.1.1.1 海水流量 84
4.1.1.2 集熱器循環流量 84
4.1.1.3 儲熱槽進口流量 87
4.1.2 AGMD靈敏度 88
4.1.2.1 海水流量 88
4.1.2.2 集熱器循環流量 88
4.1.2.3 儲熱槽進口流量 91
4.2 控制架構 (Control structure) 91
4.2.1 DCMD控制架構 91
4.2.1.1 控制器參數之設定與求解 97
4.2.1.2 控制結果 100
4.2.2 AGMD控制架構 102
4.2.2.1 控制器參數之設定與求解 106
4.2.2.2 控制結果 106
4.3 流體溫度設計分析 108
4.3.1 DCMD系統與成本及可操作性相互關係 108
4.3.2 AGMD系統與成本及可操作性相互關係 109
4.3.3 DCMD/AGMD可操作分析比較結果 111
4.4 DCMD控制策略1 112
4.4.1 控制結果 112
4.5 AGMD控制策略1 115
4.5.1 控制結果 115
4.6 DCMD系統性能 117
4.6.1 四季動態結果比較 117
4.6.2 晴天與多雲動態結果比較 117
4.7 AGMD系統性能 120
4.7.1四季動態結果比較 120
4.7.2晴天與多雲動態結果比較 120
4.8 DCMD/AGMD動態結果比較 123
第五章、結論 124
符號說明 126
參考文獻 132
附錄A 太陽能集熱器成本 137
附錄B 薄膜成本 138

圖目錄
圖1.1、海水淡化技術 2
圖1.2、海水淡化成本比較 4
圖1.3、薄膜蒸餾模組配置 6
圖1.4、太陽能驅動薄膜蒸餾海水淡化系統流程 8
圖1.5、設計、操作、控制三大環路圖 11
圖1.6、研究架構圖 13
圖2.1、太陽能驅動薄膜蒸餾海水淡化系統流程圖(DCMD) 15
圖2.2、太陽能驅動薄膜蒸餾海水淡化系統流程圖(AGMD) 17
圖2.3、太陽能集熱器結構示意圖 19
圖2.4、儲熱槽結構示意圖 21
圖2.5、熱交換器結構示意圖 23
圖2.6、直接接觸式薄膜結構示意圖 25
圖2.7、DCMD模式驗證冷熱物流進料溫差與質傳通量之影響 31
圖2.8、氣隔式薄膜結構示意圖 33
圖3.1、變數與成本相互關係 45
圖3.2、電加熱器成本 50
圖3.3、序列二次規劃可行路徑最適化法 55
圖3.4、最適化結果之各物流流量、溫度及設備大小與日照量關係(DCMD) 59
圖3.5、最適化結果之設備成本及操作成本與日照量關係(DCMD) 60
圖3.6、薄膜兩側冷熱物流溫差(DCMD) 61
圖3.7、夏至日照量分佈曲線 61
圖3.8、總蒸餾量與日照量關係(DCMD) 62
圖3.9、每公斤產水價錢與日照量關係(DCMD) 62
圖3.10、最適化結果之設備成本及操作成本與海水流量關係(DCMD) 63
圖3.11、最適化結果之設備成本及操作成本與集熱器循環流量關係(DCMD) 64
圖3.12、最適化結果之設備成本及操作成本與薄膜回流量關係(DCMD) 65
圖3.13、最適化結果之設備成本及操作成本與太陽能集熱器面積關係(DCMD) 66
圖3.14、最適化結果之設備成本及操作成本與薄膜面積關係(DCMD) 67
圖3.15、最適化結果之各物流流量、溫度及設備大小與日照量關係(AGMD) 69
圖3.16、最適化結果之設備成本及操作成本與日照量關係(AGMD) 70
圖3.17、薄膜兩側冷熱物流溫差(AGMD) 71
圖3.18、總蒸餾量與日照量關係(AGMD) 71
圖3.19、每公斤產水價錢與日照量關係(AGMD) 72
圖3.20、最適化結果之設備成本及操作成本與海水流量關係(AGMD) 73
圖3.21、最適化結果之設備成本及操作成本與集熱器循環流量關係(AGMD) 74
圖3.22、最適化結果之設備成本及操作成本與太陽能集熱器面積關係(AGMD) 75
圖3.23、最適化結果之設備成本及操作成本與薄膜面積關係(AGMD) 76
圖3.24、DCMD模組架構圖 (A)單一模組 (B)並聯模組 78
圖3.25、AGMD模組架構圖 (A)單一模組 (B)並聯模組 79
圖3.26、太陽能驅動薄膜海水淡化最適化結果(DCMD) 81
圖3.27、太陽能驅動薄膜海水淡化最適化結果(AGMD) 82
圖3.28、DCMD與AGMD主要成本相互關係比較 82
圖4.1、各物流流量、溫度、產能與海水流量關係圖(DCMD) 85
圖4.2、各物流流量、溫度、產能與循環流量關係圖(DCMD) 86
圖4.4、各物流流量、溫度、產能與海水流量關係圖(AGMD) 89
圖4.5、各物流流量、溫度、產能與循環流量關係圖(AGMD) 90
圖4.6、熱交換器進口溫度(T11)與儲熱槽流量關係圖(AGMD) 91
圖4.7、控制架構流程圖(DCMD) 94
圖4.8、OP閥開度調控變數幅度 98
圖4.9、TC1控制參數調諧 99
圖4.10、控制結果(DCMD) 101
圖4.11、控制架構流程圖(AGMD) 103
圖4.12、TC1控制參數調諧 106
圖4.13、控制結果(AGMD) 107
圖4.14、薄膜、熱交換器、集熱器成本與集熱器出口溫度關係(DCMD) 109
圖4.15、成本和最大可操作溫度與集熱器出口溫度關係(DCMD) 109
圖4.16、薄膜、熱交換器、集熱器成本與集熱器出口溫度關係(AGMD) 110
圖4.17、成本和最大可操作溫度與集熱器出口溫度關係(AGMD) 111
圖4.18、DCMD/AGMD之循環流量、集熱器進出口溫差與集熱器出口溫度比較圖 112
圖4.19、TC1控制參數調諧 113
圖4.20、控制策略1結果(DCMD) 114
圖4.21、TC1控制參數調諧 115
圖4.22、控制策略1結果(AGMD) 116
圖4.23、四季控制結果(DCMD) 118
圖4.24、晴天與多雲控制結果(DCMD) 119
圖4.25、四季控制結果(AGMD) 121
圖4.26、晴天與多雲控制結果(AGMD) 122
圖4.27、DCMD/AGMD動態結果比較 123


表目錄
表1.1、全球水資源蘊含量分佈情況 2
表2.1、太陽能集熱器物理參數設定 20
表2.2、儲熱槽物理參數設定 22
表2.3、熱交換器物理參數設定 24
表2.4、直接接觸式薄膜設備尺寸與參數設定彙整表 29
表2.5、DCMD模式驗證模組之設備尺寸 30
表2.6、DCMD模式驗證模組之薄膜資料 30
表2.7、DCMD模式驗證模組之操作條件 31
表2.8、氣隔式薄膜設備尺寸與參數設定彙整表 38
表3.1、太陽能驅動海水淡化系統DCMD/AGMD變數數目彙整表 41
表3.2、太陽能驅動海水淡化系統DCMD/AGMD方程式數目彙整表 42
表3.3、DCMD/AGMD之設計自由度變數與各變化之操作限制 44
表3.4、熱交換器操作範圍與成本計算方程式彙整表 47
表3.5、離心式泵操作範圍與成本計算方程式彙整表 48
表3.6、最適化結果DCMD/AGMD之設備尺寸 81
表4.1、控制系統控制配對表之一(DCMD) 95
表4.2、控制系統控制配對表之二(DCMD) 96
表4.3、DCMD與AGMD控制器參數設定彙整表 99
表4.4、控制系統控制配對表之一 (AGMD) 104
表4.5、控制系統控制配對表之二 (AGMD) 105
表4.6、DCMD與AGMD控制策略1之控制器參數設定彙整表 113
參考文獻 Alklaibi AM, Lior N. Membrane-distillation desalination: status and potential. Desalination 2004;171:111-31.
Alklaibi AM, Lior N. Heat and mass transfer resistance analysis of membrane distillation. J Membr Sci 2006;282:362-9.
Al-Nimr MA, Kiawn S, Al-Alwah A. Size optimization of convention solar collectors. Energy 1998;23:373-8.
Al-Obaidani S. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. J Membr Sci 2008;323:85–98.
Al Suleimani Z, Rajendran Nair V. Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman. Applied Energy 2000;65:367-80.
Avlonitis S, Hanbury WT, Boundinar MB. Spiral wound modules performance an analytical solution: part II. Desalination 1993;89: 227-46.
Ben Bacha H, Dammak T, Ben Abdalaha AA, Maaleja AY, Ben Dhia H. Desalination unit coupled with solar collectors and storage tank: modeling and simulation. Desalination 2007;206:341-52.
Banat F, Jwaied N, Rommel M, Koschikowski J, Wieghaus M. Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination 2007;217:17-28.
Banat F, Jwaied N, Rommel M, Koschikowski J, Wieghaus M. Desalination by a “compact SMADES” autonomous solar-powered membrane distillation unit. Desalination 2007;217:29-37.
Banat F, Jwaied N. Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination 2008;220:566-73.
Bui VA, Vu LTT, Nguyen MH. Simulation and optimisation of direct contact membrane distillation for energy efficiency. Desalination 2010;259:29-37.
Cabassud C, Wirth D. Membrane distillation for water desalination: how to chose an appropriate membrane? Desalination 2003;157:307-14.
Chang H, Liau JS, Ho CD, Wang WH. Simulation of membrane distillation modules for desalination by developing user's model on Aspen Plus platform. Desalination 2009;249:380-7.
Chang H, Wang GB, Chen YH, Li CC, Chang CL. Modeling and optimization of a solar driven membrane distillation desalination system. Renewable Energy 2010;35:2714-22.
Chang KC, Lee TS, Lin WM, Chung KM. Outlook for solar water heaters in Taiwan. Energy Policy 2008;36:66–72.
Chang KC, Lin WM, Lee TS, Chung KM. Local market of solar water heaters in Taiwan: Review and perspectives. Renewable and Sustainable Energy Reviews 2009;13:2605–12.
Chang TP. Performance evaluation for solar collectors in Taiwan. Energy 2009;34:32–40.
Chen YH, Li YW, Chang H. Optimal design and control of solar driven air gap membrane distillation desalination systems. Applied Energy 2012; Article in Press.
Coughanowr DR, LeBlanc SE. Process systems analysis and control. 3rd
ed. McGraw-Hill international edition; 2009.
Crook P, Caruso ML, Kingseed DA. Corrosion resistance of a new, wrought Ni-Cr-Mo alloy. Materials Selction & Design 1997;36:49-52.
Curcio E, Drioli E. Membrane distillation and related operations - A review. Separation and Purification Reviews 2005;34:35-86.
Delyannis E. Historic background of desalination and renewable energies. Solar Energy 2003;75:357-66.
Ding Z, Liu L, E1-Bourawi MS, Ma R. Analysis of a solar-powered membrane distillation system. Desalination 2005;172:27-40.
Douglas JM. Conceptual design of chemical processes. New York: McGraw-Hill; 1988.
El-Bourawi MS, Ding Z, Ma R, Khayet M. A framework for better understanding membrane distillation separation process. J Membr Sci 2006;285:4-29.
Fiorenza G, Sharma VK, Braccio G. Techno-economic evaluation of a solar powered water desalination plant. Energy Conversion and Management 2003;44:2217-40.
Gilron J, Song L, Sirkar KK. Design for cascade of crossflow direct contact membrane distillation. Ind Eng Chem Res 2007;46:2324-34.
Glueckstern P. Potential uses of solar energy for seawater desalination. Desalination 1995;101:11-20.
Hogan PA, Sudjito, Fane AG, Morrison GL. Desalination by solar heated membrane distillation. Desalination 1991;81:81-90.
Hollands KGT, Shewen EC. Optimization of flow passage geometry for air-heating, plate-type solar collectors. Journal of solar energy engineering 1981;103:323-30.
Hsu ST, Cheng KT, Chiou JS. Seawater desalination by direct contact membrane distillation. Desalination 2002;143:279-87.
Jijakli K, Arafat H, Kennedy S, Mande P, Theeyattuparampil VV. How green solar desalination really is? Environmental assessment using life-cycle analysis (LCA) approach. Desalination 2012;287:123-31.
Juanico L. A new design of roof-integrated water solar collector for domestic heating and cooling, Solar Energy 2008;82:481–92.
Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci 2005;31:242-81.
Kavvadias KC, Tosios AP, Maroulis ZB. Design of a combined heating, cooling and power system: Sizing, operation strategy selection and parametric analysis. Energy Conversion and Management 2010;51:833-45.
Khayet M. Membranes and theoretical modeling of membrane distillation: A review. Advances in Colloid and Interface Science 2011;164:56-88.
Khayet M, Cojocaru C. Air gap membrane distillation: Desalination, modeling and optimization. Desalination 2012;287:138-45.
Khayet M, Matsuura T, Mengual JI. Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness. J Membr Sci 2005;266:68-79.
Koschikowski J, Wieghaus M, Rommel M. Solar thermal-driven desalination plants based on membrane distillation. Desalination 2003;156:295-304.
Lawson KW, Lloyd DR. Membrane distillation. II. Direct contact MD. J Membr Sci 1996;120:123-33.
Lawson KW, Lloyd DR. Membrane distillation. Review. J Membr Sci 1997;124:1-25.
Luyben WL. Design and control degrees of freedom. Ind Eng Chem Res 1996;35:2204-14.
Manzolini G, Bellarmino M, Macchi E, Silva P. Solar thermodynamic plants for cogenerative industrial applications in southern Europe. Renewable Energy 2011;36:235-43.
Meindersma GW, Guijt CM, de Haan AB. Desalination and water recycling by air gap membrane distillation. Desalination 2006;187:291-301.
Morin G, Dersch J, Platzer W, Eck M, Haberle A. Comparison of linear fresnel and parabolic trough collector power plants. Solar Energy 2012;86:1–12.
Peters MS, Timmerhaus KD. Plant design and economics for chemical engineers. 4th ed. New York: McGraw-Hill; 1991.
Pidwirny M. Fundamentals of physical geography. 2nd ed. New York: McGraw-Hill; 2006.
Posey ML, Rochelle GT. A thermodynamic model of methyldiethanolamine-CO2-H2S-Water. Ind Eng Chem Res 1997;36-3944-53.
Qtaishat MR, Banat F. Desalination by solar powered membrane distillation systems. Desalination 2012; Article in Press.
Raluy RG, Schwantes R, Subiela VJ, Penate B, Melian G, Betancort JR. Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination 2012;290:1-13.
Reid RC, Prsusnitz JM, Poling BE. The properties of gases & liquids. 4th
ed. McGraw-Hill international edition; 1986.
Saffarini RB, Summers EK, Arafat HA, Lienhard V JH. Technical evaluation of stand-alone solar powered membrane distillation systems. Desalination 2012;286:332-41.
Seider WD, Seader JD, Lewin DR, Widagdo S. Product and process design principles synthesis, analysis, and evaluation. John Wiley & Sons, Inc.; 1999.
Seider WD, Seader JD, Lewin DR, Widagdo S. Product and process design principles synthesis, analysis, and evaluation. 3rd ed. John Wiley & Sons, Inc.; 2010.
Soubdhan T, Emilion R, Calif R. Classification of daily solar radiation distributions using a mixture of Dirichlet distributions. Solar Energy 2009;83:1056–63.
Srisurichan S, Jiraratananon R, Fane AG. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. J Membr Sci 2006;277:186-94.
Turton R, Bailie RC, Whiting WB, Shaeiwitz JA. Analysis, synthesis, and design of chemical process. 2nd ed. Prentice Hall Inc.; 1998.
Wang X, Zhang L, Yang H, Chen H. Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system. Desalination 2009;247:403-11.
Wu JH, Huang YH. Renewable energy perspectives and support mechanisms in Taiwan. Renewable Energy 2006;31:1718–32.
Yang L, Hu H, Chen X. Energy-consumption analysis of a configuration of an absorption vapor compression coupled to MED in a dual-purpose power plant. Desalination and Water Treatment 2010;18:38-45.
Zhang L, Xie L, Chen HL, Gao CJ. Progress and prospects of seawater desalination in China. Desalination 2005;182:13-8.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-08-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信