§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3107201209420500
DOI 10.6846/TKU.2012.01345
論文名稱(中文) 以膜過濾系統分離生質酒精發酵槽產品之最佳化設計
論文名稱(英文) Optimum design on membrane filtration system for separation of bioethanol fermentation broth
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 辜建諭
研究生(英文) Chien-Yu Ku
學號 600400013
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-16
論文頁數 123頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 莊清榮(cjchuang@cycu.edu.tw)
委員 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 童國倫(kuolun@ntu.edu.tw)
委員 - 李篤中(djlee@ntu.edu.tw)
關鍵字(中) 掃流過濾
生質酒精
分離效率
關鍵字(英) Cross-flow filtration
Bioethanol
Separation efficiency
第三語言關鍵字
學科別分類
中文摘要
本研究以酵母菌、葡萄糖、酒精配置成三成份之懸浮液來模擬生質酒精發酵槽產品,利用掃流過濾系統分別回收酒精發酵槽之產物,將分離程序分成兩階段,第一階段利用微過濾薄膜(MCE 0.45微米)將酵母菌細胞濃縮,降低酒精濃度以減少抑制酵母菌活性,第二階段利用超過濾膜(RC 5kDa)濃縮葡萄糖基質,以回收再利用,並探討操作條件對濾液通量、過濾阻力、濾餅性質及分離效率之影響。
MCE微過濾主要的阻力是酵母菌在濾膜表面堆積形成的濾餅阻力,增加過濾壓差會增加濾餅量並壓縮濾餅,因此增加過濾壓差無法提升濾液通量。增加掃流速度能降低濾餅量,使濾餅阻力大幅降低,因此能有效的提升濾液通量。RC超過濾主要影響濾速衰退的阻力有葡萄糖在膜面堆積形成濾餅、各溶質於膜孔道內部阻塞及濃度極化層造成的阻力,增加過濾壓差及掃流速度皆會使各阻力增加,特別是增加掃流速度會造成阻力大幅提升、使濾液通量減少。此外,增加過濾壓差及掃流速度皆會使MF及UF的各溶質阻擋率提升,但掃流速度對各溶質阻擋率的影響較大,在壓差100 kPa下,MF與UF之掃流速度若從0.1提升至0.5m/s,其葡萄糖阻擋率分別從4.7%與24%提升至7.6%與40.9%。
本研究對MF與UF進行理論分析,推導操作條件與濾液通量及溶質阻擋率之關係,利用實驗數據回歸各參數後,將參數代入各方程式進行計算,所得之理論值符合實驗之趨勢。本研究並嘗試最佳操作的分析,若控制操作條件在掃流速度0.5 m/s及壓差在100 kPa下,MF會有最大的濾液通量,UF會有最高的葡萄糖阻擋率,而UF的濾液端酒精收集通量可達60 kg/m2day。
英文摘要
The use of a two-step cross-flow filtration system for the purification of ethanol from bioethanol fermentation tank is studied. The suspensions used in experiments are prepared using yeast cells, glucose and ethanol. In the first step, yeast cells are retained by the filter membrane during a microfiltration (MF), while most ethanol and glucose permeate through the filter cake and membrane into the filtrate. In the second step, ethanol and glucose are separated using a cross-flow ultrafiltration (UF). The yeast cake properties, the rejection coefficients of glucose and ethanol and the filtration flux under various operating conditions, such as cross-flow velocity and filtration pressure, are measured and analyzed theoretically. 
The filter cake plays the major role in determining the filtration resistance in MF. An increase in filtration pressure leads to cakes with more mass and compressible. The cake thickness and filtration resistance decreases with increasing cross-flow velocity, as a result, the filtration flux may be effectively enhanced by increasing cross-flow velocity. The glucose may deposit on the membrane surface, foul in the membrane pores and form a concentration polarization layer near the membrane surface to result in filtration resistance and decline the filtration flux during UF. An increase in cross-flow velocity or filtration pressure causes higher filtration resistance, especially the effect of cross-flow velocity. The glucose rejection increases with increasing cross-flow velocity or filtration both in MF and UF. When cross-flow velocity increases from 0.1 m/s to 0.5 m/s under a fixed pressure of 100 kPa, the glucose rejection increases from 4.7% to 7.6% in MF and from 24% to 40.9% in UF, respectively.
Theoretical models based on the resistance-in-series model, the force balance model for particle deposition, the concentration polarization model and the standard capture equation for depth filtration are derived for predicting the filtration flux and the observed glucose rejection directly from operating conditions. The agreements between calculated results and experimental data demonstrate the reliability of the proposed models. A numerical program is established to simulate the filtration fluxes and solute rejections in MF and UF. The optimum conditions are solved as a cross-flow velocity of 0.5 m/s and a filtration pressure of 100 kPa.
第三語言摘要
論文目次
目 錄
頁次
中文摘要  I
英文摘要  II
目錄  IV
圖表目錄  IX
第一章 緒論  1
1-1 前言  1
1-2 研究動機與目標  4
第二章 文獻回顧  5
2-1 連續式酒精發酵槽  5
2-2 掃流微過濾  6
2-3 濾餅性質  7
2-4 操作條件對薄膜結垢之影響  10
2-4-1 透膜壓差  10
2-4-2 薄膜表面擾動及剪應力強度  12
2-4-3 溫度  12
2-4-4 懸浮液濃度  13
2-5薄膜過濾酒精發酵槽  13
2-5-1 酵母菌之濃縮  14
2-5-2 單糖與酒精之分離  15
2-6聚集團內含水率之量測  16
第三章 理論  20
3-1 阻力串聯模式  20
3-2 濾餅的成長模式  22
3-3 濾餅的過濾比阻、孔隙度和過濾壓差的關係  24
3-4 濃度極化模式  24
3-5 溶質阻擋率的定義  25
3-6 濾餅厚度對溶質阻擋率的影響  25
3-7 擬穩定濾速及濾餅厚度之估計  27
3-8 溶質回收率  28
3-9 估算濾速及葡萄糖阻擋率  29
第四章 實驗裝置與步驟  31
4-1 掃流過濾實驗裝置  31
4-2 實驗物料  32
4-2-1 實驗進料  32
4-2-2 緩衝溶液  33
4-2-3 實驗用濾膜  34
4-3 分析儀器  34
4-4  實驗方法與步驟  37
4-4-1 緩衝溶液配置  37
4-4-2 清洗酵母菌步驟  38
4-4-3 實驗步驟  38
4-4-4 葡萄糖與酒精濃度之測量方法  41
第五章 結果與討論  43
5-1  MCE 0.45 um之掃流微過濾  43
5-1-1 酵母菌/葡萄糖/酒精 三成分掃流微過濾特性  43
5-1-2 過濾阻力分析  47
5-1-2.1 過濾總阻力分析  47
5-1-2.2 濾材阻力分析  49
5-1-2.3 濾餅阻力分析  51
5-1-2.4 薄膜孔道內阻力分析  52
5-1-3 濾餅性質分析  53
5-1-3.1 濾餅重量分析  53
5-1-3.2 濾餅孔隙度分析  54
5-1-3.3 濾餅平均過濾比阻分析  56
5-1-3.4 濾餅壓縮性質分析  57
5-1-4 濾餅結構分析  59
5-1-5 分離效率分析  66
5-1-5.1 溶質阻擋率分析  66
5-1-5.2 溶質收集的質量通量  68
5-1-6參數估計  70
5-2 RC 5 kDa 之掃流過濾  73
5-2-1葡萄糖/酒精 雙成分掃流微過濾特性  73
5-2-2 過濾阻力分析  76
5-2-2.1 過濾總阻力分析  76
5-2-2.2 濾材阻力分析  77
5-2-2.3 濾餅阻力分析  78
5-2-2.4 薄膜孔道內阻力分析  78
5-2-2.5 濃度極化層阻力分析  79
5-2-3 濾餅表面結構分析  81
5-2-4 分離效率分析  84
5-2-4.1 溶質阻擋率分析  84
5-2-4.2 溶質回收率分析  86
5-2-4.3 溶質收集的質量通量  88
5-2-5 參數估計  90
5-3 濾速與濾餅性質之理論計算  94
5-3-1 MCE掃流微過濾理論計算  94
5-3-2 RC 掃流超過濾理論計算  99
5-3-3 最佳化設計  104
第六章 結論  107
符號說明  109
參考文獻  112
附錄  116
附錄A 實驗物料的種類及物性  116
附錄B 實驗數據計算式  120

圖表目錄
圖目錄
第一章
Fig.1-1生質作物生產酒精之示意圖	1
Fig.1-2 Schematics of (a) cake filtration and (b) cross-flow filtration.	3
第二章
Fig.2-1 A conceptual visualization of the moisture distribution in sludge(Tsang and Vesilind, 1990)	18
Fig.2-2 The drying apparatus (Tsang and Vesilind, 1990).	18
Fig.2-3 Drying curve for identifying four different types of water in sludge (Tsang and Vesilind, 1990).	19
第三章
Fig.3-1 The resistance of microfiltration.	21
Fig.3-2 A schematic diagram around the cake membrane surface in a cross-flow microfiltration	23
Fig.3-3 Flow chart for calculate qs、Rrej-C6 of MF and UF.	30
第四章
Fig.4-1 A schematic diagram of cross-flow filtration system..	32
Fig.4-2 The absorbance vs. concentrations of glucose.	41
Fig.4-3 The absorbance vs. concentrations of ethanol.	42
第五章
Fig.5-1(a) Time course of filtration rates during cross-flow microfiltration under various cross-flow velocities.	45
Fig.5-1(b) Time course of filtration rates during cross-flow microfiltration under various cross-flow velocities.	45
Fig.5-2(a) Time course of filtration rates during cross-flow microfiltration under various filtration pressures.	46
Fig.5-2(b) Time course of filtration rates during cross-flow microfiltration under various filtration pressures.	46
Fig.5-3 Filtration pressures course of pseudo-steady filtration rates during cross-flow microfiltration under various cross-flow velocities.	47
Fig.5-4 Filtration pressures course of total resistances during cross-flow microfiltration under various cross-flow velocities.	48
Fig.5-5 Filtration resistances in cross-flow filtration under different filtration pressures.	50
Fig.5-6 Filtration resistances in cross-flow filtration under different cross-flow velocities.	50
Fig.5-7 Effect of cake mass under various filtration pressures for different cross-flow velocities.	54
Fig.5-8 Effect of cake porosity under various filtration pressures for different cross-flow velocities.	55
Fig.5-9 Effect of the specific filtration resistance under various filtration pressures for different cross-flow velocities.	57
Fig.5-10 The relationships between 1-eav and filtration pressure under various cross-flow velocities.	58
Fig.5-11 The photographs of the cake structures
cross-flow velocity:0.1 m/s,△P:(a) 20kPa、(b) 100kPa.	60
Fig.5-12 The photographs of the cake structures cross-flow    velocity:0.3 m/s,△P:(a) 20kPa、(b) 40kPa、(c) 100kPa.	61
Fig.5-13 The photographs of the cake structures cross-flow    velocity:0.5 m/s,△P:(a) 20kPa、(b) 60kPa、(c) 100kPa.	62
Fig.5-14 The photographs of the cake structures under filtration pressures:20kPa,us:(a) 0.1 m/s、(b) 0.3 m/s、(c) 0.5 m/s.	64
Fig.5-15 The photographs of the cake structures under filtration pressures:100kPa,us:(a) 0.1 m/s、(b) 0.3 m/s、(c) 0.5 m/s.	65
Fig.5-16 Effect of the rejection of ethanol various filtration pressures for different cross-flow velocities.	67
Fig.5-17 Effect of the rejection of glucose various filtration pressures for different cross-flow velocities.	67
Fig.5-18 Effect of the recovery rate of ethanol various filtration pressures for different cross-flow velocities.	69
Fig.5-19 Effect of the recovery rate of glucose various filtration pressures for different cross-flow velocities.	69
Fig.5-20 A plot of qs vs. usH/(H-Lc )2.	71
Fig.5-21 Comparisons of filtration flux between calculated results and
experimental data.	71
Fig.5-22 A plot of ln{[exp(qs/k)] x [Rrej/(1-Rrej)+1]} versus Lc.	72
Fig.5-23 Comparisons of glucose rejection between calculated results and experimental data.	72
Fig.5-24 Time courses of filtration rate during cross-flow ultrafiltration under various filtration pressures.	74
Fig.5-25 Time courses of filtration rate during cross-flow ultrafiltration under various cross-flow velocities.	75
Fig.5-26 Effect of filtration pressure on pseudo-steady filtration rate under various cross-flow velocities.	75
Fig.5-27 Filtration pressures course of total resistances during cross-flow microfiltration under various cross-flow velocities.	77
Fig.5-28 Filtration resistances in cross-flow filtration under different filtration pressures.	80
Fig.5-29 Filtration resistances in cross-flow filtration under different cross-flow velocities.	80
Fig.5-30 The photographs of tke cakes structure,(a) virgin membrane,	
cross-flow velocity:0.5 m/s,△P:(b) 20kPa、(c) 60kPa、(d) 100kPa .	82
Fig.5-31 The photographs of the cakes structure,(a) virgin membrane,	
filtration pressure:100kPa,us:(b) 0.1 m/s、(c) 0.3 m/s、(d) 0.5 m/s.	83
Fig.5-32Effect of the rejection of glucose and ethanol various filtration pressures for different cross-flow velocities.	85
Fig.5-33 Effect of filtration pressure on the solute recovery under different cross-flow velocities.	87
Fig.5-34 Effect of filtration pressure on the ratio of glucose and ethanol recovery under different cross-flow velocities.	88
Fig.5-35 Effect of the recovery rate of glucose and ethanol various filtration pressures for different cross-flow velocities.	89
Fig.5-36 A plot of us vs. qs(Rt/Rc)0.4.	92
Fig.5-37 Comparisons of filtration flux between calculated results and
experimental data.	92
Fig.5-38 A plot of ln{[exp( qs / k )] x [Rrej / (1-Rrej)+1]} versus Rc.	93
Fig.5-39 Comparisons of glucose rejection between calculated results and experimental data.	93
Fig.5-40 Calculated values of cake thickness under various filtration pressures and cross-flow velocities.	96
Fig.5-41 Comparisons of cake thickness between calculated results and
experimental data.	96
Fig.5-42 Calculated pseudo-steady filtration rates under various filtration pressures and cross-flow velocities.	97
Fig.5-43 Comparisons of pseudo-steady filtration rates between calculated results and experimental data.	97
Fig.5-44 Calculated values of glucose rejection under various filtration pressures and cross-flow velocities.	98
Fig.5-45 Comparisons of glucose rejection between calculated results and experimental data.	98
Fig.5-46 Calculated cake resistances under various filtration pressures and cross-flow velocities.	101
Fig.5-47 Comparisons of cake resistance between calculated results and experimental data.	101
Fig.5-48 Calculated pseudo-steady filtration rates under various filtration pressures and cross-flow velocities.	102
Fig.5-49 Comparisons of pseudo-steady filtration rates between calculated results and experimental data.	102
Fig.5-50 Calculated glucose rejections under various filtration pressures and cross-flow velocities.	103
Fig.5-51 Comparisons of glucose rejection between calculated results and experimental data.	103
Fig.5-52 A diagrams  for ethanol removal from fermentor.	105
附錄
Fig.A-1 The microscope picture of yeast(1800X)	117
Fig.A-2 Particle size distribution of Yeast/Glucose/EtOH under pH=7.0 .	117
Fig.A-3 The side view of the MCE 0.45um membrane by SEM(50,000X).	119
Fig.A-4 The side view of the RC 5 kDa membrane.	119
Fig.B-1 The effect of pressure drop on the membrane resisitance.	121
 
表目錄
Table.4-1 Operating conditions.	40
Table.5-1 The parameters measured or calculated in MF (SI system)	94
Table.5-2 The parameters measured or calculated in UF (SI system)	99
Table.B-1 The value of Rm under different operation conditions.	120
參考文獻
參考文獻

Baker, R. J., A. G. Fane, C. J. D. Fell and B. H. Yoo, “Factors Affecting Flux in Cross-flow Filtration, ” Desalination, 53, 81-96 (1985).

Bian, R., Watanabe, Y., Tambo, N. and Ozawa, G., “Removal of humic substances by UF and NF membrane systems,” Wat. Sci. Technol. 40(9), 121-129 (1999).

Chaabane, F.B. , A. D. Aldiguier , S. Alfenore , “Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycle,” Bioprocess Biosys. Eng., 29, 49-57 (2006).

Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd Ed., Technomic Publishing Company, USA (1998).

Groot, W.J., C.M. Sikkenk, R. H. Waldram, “Kinetics of ethanol production by baker’s yeast in an integrated process of fermentation and microfiltration,” Bioprocess Eng., 8, 39-47 (1992).

Hwang, K.J. Y.H. Yu, W.M. Lu, “Cross-flow Microfiltration of Submicron Microbial Suspension,” J. Membr. Sci., 194, 229-243 (2001).

Hwang , K. J. , Y. H. Cheng and K. L. Tung , “Modeling of Cross-Flow Microfiltration of Fine Particle/Macromolecule Binary Suspension,” J. Chem, Eng, Jpn , 36(12), 1488-1497 (2003).

Hwang , K. J. , L. W. Lin , “Separation of Protein from Microbe/Protein Binary Suspension Using a Cross-Flow Microfiltration ” , Chem. Eng J., 38(11) , 894-902 (2005).

Hwang , K. J. , Y. J. Wu , “Flux enhancement and cake formation in air-sparged cross-flow microfiltration ” , J. Chem. Eng, Jpn, 139, 296-303 (2008).

Hwang , K. J. , C. E. Hsu , “Effect of gas–liquid flow pattern on air-sparged cross-flow microfiltration of yeast suspension ” , J. Chem. Eng, Jpn, 151 , 160-167 (2009).

Hwang , K. J. , K. C. Chen , “Sugar Purification from Enzymatic Rice Straw Hydrolysis Products using Cross-Flow Diafiltration ” ,Sep. Sci and Tech. , 47 , 52-61 (2012).

Iritani, Eiji, Y. Mukai, Y. Tanaka and T. Murase, “Flux decline behavior in dead-end microfiltration of protein solutions”, J. Membr. Sci., 103 181-191 (1995).

Kim, K. J., A. G. Fane, C. J. D. Fell and D. C. Joy, “Fouling mechanism of membranes during protein ultrafiltration”, J. Membr. Sci., 68 79-91 (1992).

Leu , W. M. , M. H. Lee and F. M. Tiller , “Cake Compressible-A rigorous Definition” , Proc. Of the 6th World Filtration Congress , Nagoya , Japan , 148 (1993).

Lewandowicz, G., W. Białas, B. Marczewski , D. Szymanowska , “Application of membrane distillation for ethanol recovery during fuel ethanol production”, J. Membr. Sci., 375, 212-219 (2011).

Lu , W. M. , C. J. Chung and S. J. Yu , “On Line Filtration Test System” , Proc. Symposium on Transport Phenomena Applications(Chinese) , Taipei , June , 41 (1987).

Lu , W. M. , Tung K. L. , Pan C. H. , Shih C. P. and Hwang K. J. , “Cross-flow Microfiltration of Deformable Particles”, Proc.  Symposium on Transport Phenomena and Applications, 41-44 (1998).

Lu ,W. M. , Tung K. L. , “Compression of deformable gel particles”, Powder Techno., 116, 1-12 (2001).

MareČek, J.,“Filter Cloth Plugging and Effect on the Filter Performance”, Ind. Eng. Chem. Process. Des. Dev., Vol.20, P.693 (1981).

Matsumoto, Y., S. Nakao and S. Kimura, “Cross-flow filtration of solution of polymers using ceramic microfiltration”, Int. Chem. Eng., 28 677-683 (1988).

Murase, T., E. Iritani, J. H. Cho, S. Nakanomori and M. Shirato, “Determination of Filtration Characteristics due to Sudden Reduction in Filtration Area of Filter Cake Surface”, J. of Chem. Eng. Jpn, 20(3), 246-251 (1987).

Riesmeier B.,Kroner K. H. and Kula M. R., “Tangential Filtration of Microbial Suspensions: Resistance and Model Development ”,J Biotechnol., 12,153 (1989)

Ruchton, A. and Zhang, G. S., “Rotary Microporous filtration”, Desalination, 70, 379-394 (1988)

Sanyal, S. K., K. Kargupta, S. Datta, “Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation”, J. Biochem. Eng.,1,31-37 (1998)

Sjoman, E., M. Manttari, “Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions”, J. Membr. Sci., 292, 106-115 (2007)

Tiller , F.M , S. Haynes and W. M. Lu , “The Role of Porosity in Filtration VII:Effect of Side-Wall Friction in Compression Permeability Cells” , A.I.Ch.E J. , 18 , 13-20 (1972).

Tsang, K. R. and Vesilind, P. A., “Moisture Distribution in Sludge”, Wat. Sci. Technol., 22, 135-142 (1990)

Tung K.L. and Chuang C.J., “Effect of Pore Morphology on Fluid Flow and Particle Deposition on a Track-Etched Polycarbonate Membrane”, Desalination, 146,149-134 (2002).

Velasco C. and Hernandez A., “Protein fouling in microfiltration: deposition mechanism as a function of pressure for different pH, ” J. Colloid Interface Sci., 266, 148–152 (2003).

Wan , Y. , B. Qi , J. Luo, X. Chen, X. Hang, “Separation of furfural from monosaccharides by nanofiltration”, Bioresource Technol., 102, 7111-7118 (2011).

Wakeman, R. J. and E. S. Tarleton, “Understanding Flux Dec-line in Cross-flow Microfiltration: Part I – Effects of Particle and Pore Size”, Trans. IchemE., 71, Part A, 399-410 (1993).

Wakeman, R. J. and E. S. Tarleton, “Understanding Flux Decline in Cross-flow Microfiltration: Part II - Effects of Process Parameters”, Trans. IchemE, 72, Part A, 431-440 (1994).

Yeh, H. M., Cheng, T. W. and Wu, H. H., “Membrane ultrafiltration in hollow- fiber module with the consideration of pressure declination along the fibers.” , Sep. Purif. Technol. 13, 171-180 (1998).
呂維明 編著,“固液過濾技術”,高立圖書館有限公司 (2004)。
陳逢聖,「以掃流為過濾分離酵母菌/牛血清蛋白懸浮溶液」,碩士論文,淡江大學化材系(2004)。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信