淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-3107201201165600
中文論文名稱 鉑-二氧化鈦/碳甲醇氧化電催化劑之製備與最佳化
英文論文名稱 Preparation and Optimizing of Pt-TiO2/C Electrocatalyst for Methanol Oxidation Reaction
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 陳俞安
研究生英文姓名 Yu-An Chen
學號 699400437
學位類別 碩士
語文別 中文
口試日期 2012-07-16
論文頁數 102頁
口試委員 指導教授-林正嵐
委員-蔡子萱
委員-吳永富
委員-張裕祺
委員-林達鎔
中文關鍵字 直接甲醇燃料電池  甲醇氧化反應  電催化劑  碳黑載體  二氧化鈦 
英文關鍵字 direct methanol fuel cell  methanol oxidation reaction  electrocatalyst  carbon support  titanium dioxide 
學科別分類
中文摘要 直接甲醇燃料電池(Direct methanol fuel cell, DMFC)具有很好的發展潛力,因為它具有高能量轉換效率和低環境影響之優勢,但陽極電催化劑的活性不高,阻礙了 DMFC 的發展。一般使用 Pt當作甲醇氧化反應(Methanol oxidation reaction, MOR)的電催化劑。然而在 MOR 的過程中會產生 CO ,它會吸附在 Pt 表面且不易移除,使得 Pt無法繼續催化MOR,稱為 CO 毒化現象。本研究使用的電催化劑以碳黑為載體,將 Pt和TiO2的奈米複合材料負載在載體上(Pt-TiO2/C),以利於提升 MOR 效能和抵抗 CO 毒化的能力。
Pt-TiO2/C 電催化劑使用兩步法合成。第一步,使用 NaOH 處理過後的碳黑當作載體,再以溶膠/凝膠法製作 TiO2 奈米顆粒,將其負載在載體上,可以得到 TiO2/C 奈米複合材料。第二步,將 Pt 奈米顆粒負載在 TiO2/C 的表面上,即可得到 Pt-TiO2/C 電催化劑。TiO2 奈米顆粒是經由四異丙烷氧化鈦(titanium tetra-isopropoxide, TTIP) 加入含有丙酮和碘的乙醇中,發生水解與縮合反應製備而得。Pt 奈米顆粒是使用多元醇還原法所合成的,利用乙二醇當作還原劑,在酸性或鹼性的環境下進行還原反應而得。將所得的 Pt-TiO2/C 電催化劑經由穿透式電子顯微鏡 (transmission electron microscope, TEM)、X 光能譜分析儀 (energy dispersive X-ray spectrometer, EDS)、傅立葉轉換紅外線吸收光譜儀(Fourier transform infrared spectroscopy , FT-IR) 和X光繞射分析儀 (X-ray diffractometer, XRD) 去分析其特性,並使用循環伏安法 (cyclic voltammetry, CV) 和計時安培法 (chronoamperometry, CA) 進行 MOR 效能、電化學活性表面積 (electrochemical active surface area, EASA)、CO 脫附與穩定性等電化學特性分析。
Pt-TiO2/CS(2)(80, 200, 450)A 和 Pt-TiO2/C(2)(80, 200, 450)A 兩系列電催化劑是在酸性環境下,利用 NaOH 處理過或未經處理的碳黑當作載體,並使用不同的燒結溫度所製作而成。Pt 奈米顆粒大小大約在 5~8 奈米且有聚集的現象。Pt-TiO2/CS(2)(200, 450, 600)B 和 Pt-TiO2/C(2)(200, 450, 600)B 兩系列的電催化劑是在鹼性環境下所製作的。Pt 奈米顆粒大小大約在 2~4 奈米且均勻分散在載體上,而且他們的 MOR 效能有明顯的提升。所以 Pt-TiO2/CS(1-5)450B 系列的電催化劑選擇在鹼性環境下製作,並改變 TiO2 和 C 的組成,找出最好的 MOR 效能。結果顯示 Pt-TiO2/CS(1-5)450B 系列電催化劑的 MOR 效能均高於市售 E-TEK Pt/C。Pt-TiO2/CS(4)450B 可以得到最好的 MOR 效能 799 ± 62 A/g-Pt,大約為市售 E-TEK Pt/C 414 ± 59 A/g-Pt 的 1.93 倍。
英文摘要 Direct methanol fuel cell (DMFC) has been considered as a new potential energy source in the near future owning to its higher energy conversion efficiency and smaller environmental impact compared to conventional fossil-based energy generation systems. However, the low activity of the anode electrocatalysts is one of the major problems for the development of DMFC. Pt is widely used as the electrocatalyst for methanol oxidation reaction (MOR). However, Pt can be easily poisoned by the strongly adsorbed intermediates generated during MOR, such as CO, and lose its electrocatalytic activity rapidly. In this study, Pt-TiO2 nanocomposites supported on carbon black was used as the electrocatalyst, in order to enhance the MOR efficiency and CO-tolerance ability.
The Pt-TiO2/C electrocatalysts were prepared by two-step procedure. First step, XC-72 was pretreated with NaOH aqueous solution and decorated with solgel-derived TiO2 nanoparticles to get TiO2/C as the substrate. Second step, Pt nanoparticles were prepared onto the substrate surface to obtain Pt-TiO2/C electrocatalysts . The TiO2 nanoparticles were synthesized by catalyzed hydrolysis and inhibited condensation reaction of titanium tetra-isopropoxide in an ethanol solution containing acetone and Iodine. A polyol process using ethylene glycol as the reducing agent was employed at acidic or basic condition for the synthesis of the Pt nanoparticles. The resultant Pt-TiO2/C electrocatalysts have been characterized by means of transmission electron microscope (TEM), energy dispersive X-ray spectrometer (EDS), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffractometer (XRD) analysis. The MOR efficiency, electrochemical active surface area (EASA), CO stripping and MOR stability of the electrocatalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry (CA) experiments.
For the acidic polyol condition, the Pt-TiO2/CS(2)(80, 200, 450)A and Pt-TiO2/C(2)(80, 200, 450)A series electrocatalysts used NaOH-pretreated and pristine Vulcan XC-72 carbon black as the support and annealed at different temperature, the Pt nanoparticle aggregates with sizes of 5~8 nm were obtained. For the basic polyol condition (Pt-TiO2/CS(2)(200, 450, 600)B and Pt-TiO2/C(2)(200, 450, 600)B series), the Pt nanoparticle uniformly dispersed with sizes of 2~4 nm were obtained, and their MOR efficiency were sighificantly improve. In order to optimize the composition of TiO2 and Vulcan XC-72 carbon, the Pt-TiO2/CS(1-5)450B series electrocatalyst were synthesized using NaOH-pretreated Vulcan XC-72 carbon black and calcined at 450oC. The MOR efficiency of these electrocatalysts were all higher than the commercial E-TEK Pt/C electrocatalyst. The Pt-TiO2/CS(4)450B electrocatalyst achieved the highest MOR efficiency of 799 ± 62 A/g-Pt among all the electrocatalysts prepared in this study, and which was about 1.93 times higher than that of the commercial E-TEK Pt/C electrocatalyst (414 ± 59 A/g-Pt).
論文目次 目錄
中文摘要 I
英文摘要 III
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 燃料電池的種類 3
1.3直接甲醇燃料電池 4
1.4 DMFC之陽極電催化劑 6
1.4.1雙元合金電催化劑 6
1.4.2鉑-過渡金屬氧化物之電催化劑 7
1.5 研究目的與動機 8
第二章 文獻回顧 9
2.1 Pt/TiO2 和 Pt-TiO2/C 應用於氧氣還原反應 9
2.2 以 TiO2 為載體之 Pt-TiO2 電催化劑 14
2.3以 TiO2/C 為載體之電催化劑 20
第三章 實驗 24
3.1 研究目的與方法 24
3.2 實驗架構 25
3.3 實驗步驟 26
3.3.1 碳載體之前處理 26
3.3.2 TiO2 奈米顆粒之製備步驟 26
3.3.3 TiO2 奈米複合顆粒製備之方法 26
3.3.4 Pt-TiO2/C 電催化劑之製備 26
3.4 表面型態與性質分析 28
3.4.1 表面能量散射X光光譜儀(energy dispersive X-ray spectroscopy, EDS) 28
3.4.2 X 光繞射分析儀 (X-ray diffractometer, XRD) 28
3.4.3 穿透式電子顯微鏡 (transmission electron microscope, TEM) 28
3.4.4 傅立葉轉換紅外線吸收光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 28
3.5 電化學分析 29
3.5.1 循環伏安法 (Cyclic voltammetry, CV) 29
3.5.2 計時安培法 (Chronoamperometry, CA) 33
3.6 實驗藥品及設備 34
第四章 TiO2/C 奈米複合顆粒之製備與性質分析 35
4.1 TiO2/C 奈米複合顆粒之影響 35
4.2 表面型態與元素分析 37
4.3 燒結溫度與TiO2/C奈米複合顆粒結晶性質 42
第五章 Pt-TiO2/C 電催化劑 MOR 效能最佳化 49
5.1 酸性環境下碳載體與燒結溫度之影響 49
5.1.1 EDS 元素分析 50
5.1.2 TEM 表面形態與結構分析 51
5.1.3 XRD 晶型結構分析 54
5.1.3 電催化劑之 MOR 效能 56
5.2 鹼性環境下碳載體與燒結溫度之影響 60
5.2.1 EDS 元素分析 61
5.2.2 TEM 表面形態與結構分析 62
5.2.3 XRD 晶型結構分析 65
5.2.4 電催化劑之 MOR 效能 66
5.3 Pt/Ti比例對於電催化劑之影響 70
5.3.1 EDS 元素分析 71
5.3.2 TEM 表面形態與結構分析 73
5.3.3 XRD 晶型結構分析 76
5.3.4 電催化劑之 MOR 效能 77
5.4 電催化劑效能比較 81
5.4.1CO脫附能力測試 和穩定性之比較 82
第六章 結論 85
建議 87
參考文獻 88
圖目錄
圖 1-1. DMFC工作原理。…………………………………….4
圖 1-2.鉑-過渡金屬氧化物之催化劑示意圖。…………………………………….7
圖 2-1. XRD pattern of Pt/TiO2 after annealing at 300 °C for 2 h in argon gas atmosphere. * corresponds to the rutile phase. 54……………………………….10
圖 2-2. TEM images of (a) TiO2 and (b) Pt/TiO2. 54………………………………...10
圖 2-3. Transmission electron micrographs of (a) titania support, (b) 20 wt% Pt/TiO2, and (b) 60 wt% Pt/TiO2 electrocatalyst. 74……………………………………..11
圖 2-4. XRD patterns of (a) Pt/C and (b) Pt/TiO2/C catalyst. 43…………………….12
圖 2-5. TEM images of the catalysts: Pt/C catalyst (a) before CV; (b) after CV; Pt/TiO2/C catalyst (c) before CV; and (d) after CV. 43………………………….13
圖 2-6. (A-C) TEM image of the anatase nanofiber after its surface had been decorated with Pt nanoparticles by immersing the sample in a polyol reduction bath for 3, 7, and 19 h, respectively.52………………………………………….14
圖 2-7. (B) Chronoamperometry curves recorded at 0.85 V for various samples. The measurement condition is as follows: 0.5 M MeOH, 0.5 M H2SO4, set potential of 0.85 V (vs RHE), and pretreatment before tests at 0 V for 30 s.52…………15
圖 2-8. TEM images of TiO2 (a and b) and the Pt/TiO2 catalyst(d and e). 49………16
圖 2-9. CO stripping curves recorded in 0.5 M H2SO4 with a scan rate of 20 mV/s: Pt/TiO2 catalyst; Pt/C catalyst. 49………………………………………………16
圖 2-10. CO stripping cyclic voltammograms in a CO saturated 0.5 M H2SO4 solution. The scan rate was 20 mV/ s. 47…………………………………………………17
圖 2-11. Cyclic voltammograms of methanol electro-oxidation in the 1 MCH3OH + 1 M H2SO4 solution. The scan rate was 20 mV/s. 47……………………………18
圖 2-12. Chronoamperometry curves in the solution of 1 M CH3OH + 1 M H2SO4 at room temperature for 1 h. The oxidation potential was kept at 0.5 V vs. SCE. 47………………………………………………………………………………18
圖 2-13. a) TEM and (b) HRTEM images of the Pt–S–TiO2/CNT catalyst.37………20
圖 2-14. Cyclic voltammograms recorded in a solution containing 1M HClO4 and 1M CH3OH measured at a scan rate of 50mV/s.37…………………………………21
圖 2-15. CO stripping voltammograms recorded in 1M HClO4 solutions at a scan rate of 10mV/s.37……………………………………………………………………21
圖 3-1. Pt-TiO2/C 和 Pt-TiO2/CS 電催化劑之製備流程示意圖。…………………24
圖 3-2. 實驗架構及流程圖。………………………………………………………..25
圖 3-3. 三極式電化學實驗系統示意圖。…………………………………………..29
圖 3-4. E-TEK Pt/C 電催化劑於 0.5 M H2SO4 + 1M CH3OH 之 CV 圖,掃描速率為 50 mV/s。………………………………………………………………..31
圖 3-5. E-TEK Pt/C 電催化劑於 0.5 M H2SO4 水溶液中進行 CO 脫附測試之CV 圖,掃描速率為 50 mV/s。……………………………………………....31
圖 3-6. E-TEK Pt/C 電催化劑於 0.5 M H2SO4 之 CV 圖,掃描速率為 50 mV/s。…………………………………………………………………………32
圖 3-7. E-TEK Pt/C 電催化劑於 0.5 M H2SO4 + 1M CH3OH 之 CA 曲線圖。定電位於0.5 V (vs. Ag/AgCl),時間為 1000 秒。……………………………....33
圖 4-1. C 和 CS 碳載體之 FTIR 圖譜。……………………………………….39
圖 4-2. (a) TiO2/CS(2)80、(b) TiO2/C(2)80 和 (c) Vulcan XC-72 之 TEM 圖。…...41
圖 4-3. TiO2/CS(2) 奈米複合顆粒系列之 XRD 分析圖譜。……........... ……......43
圖 4-4. TiO2/C(2) 奈米複合顆粒系列之 XRD 分析圖譜。………………………..43
圖 4-5. (a) TiO2/CS(2)80、(b) TiO2/CS(2)450、(c) 和 (d) TiO2/CS(2)600之TEM圖。.46
圖 4-6. TiO2/CS(2)450 奈米複合顆粒 (a) TEM 圖、(b) TEM-Mapping Ti 分佈圖。. ……………………………………………………………………………47
圖 4-7. (a) TiO2/CS(2)450、(b) TiO2/CS(2)600 之高解析度 TEM 圖。……………48
圖 5-1. (a) Pt-TiO2/CS(2)80A、(b) Pt-TiO2/CS(2)200A 與 (c) Pt-TiO2/CS(2)450A 電催化劑之 TEM 圖。………………………………………………...………….52
圖 5-2. (a) Pt-TiO2/C(2)80A、(b) Pt-TiO2/C(2)200A 與 (c) Pt-TiO2/C(2)450A 電催化劑之 TEM 圖。………………………………………………………………...53
圖 5-3. Pt-TiO2/CS(2)A 和 Pt-TiO2/C(2)A 系列電催化劑之 XRD 分析圖譜。….55
圖 5-4. Pt-TiO2/CS(2)A 系列電催化劑於 (a) 0.5 M H2SO4 與 (b) 0.5 M H2SO4 + 1 M CH3OH 水溶液中之 CV 圖,掃描速率為 50 mV/s。…………………..…57
圖 5-5. Pt-TiO2/C(2)A 系列電催化劑於 (a) 0.5 M H2SO4 與 (b) 0.5 M H2SO4 + 1 M CH3OH 水溶液中之 CV 圖,掃描速率為 50 mV/s。………………….…58
圖 5-6. (a) Pt-TiO2/CS(2)200B、(b) Pt-TiO2/CS(2)450B 與 (c) Pt-TiO2/CS(2)600B 電催化劑之 TEM 圖。…………………………………………………………….63
圖 5-7. (a) Pt-TiO2/C(2)200B、(b) Pt-TiO2/C(2)450B 與 (c) Pt-TiO2/C(2)600B 電催化劑之 TEM 圖。………………………………………………………………64
圖 5-8. Pt-TiO2/CS(2)B 和 Pt-TiO2/C(2)B 系列電催化劑之 XRD 分析圖譜。….65
圖 5-9 . Pt-TiO2/CS(2)B 系列電催化劑於 (a) 0.5 M H2SO4 與 (b) 0.5 M H2SO4 + 1 M CH3OH 水溶液中之 CV 圖,掃描速率為 50 mV/s。…………………..…68
圖 5-10. Pt-TiO2/C(2)B 系列電催化劑於 (a) 0.5 M H2SO4 與 (b) 0.5 M H2SO4 + 1 M CH3OH 水溶液中之 CV 圖,掃描速率為 50 mV/s。…………………..…69
圖 5-11. (a) Pt-TiO2/CS(1)450B、(b) Pt-TiO2/CS(2)450B、(c) Pt-TiO2/CS(3)450B、(d) Pt-TiO2/CS(4)450B 與 (e) Pt-TiO2/CS(5)450B 電催化劑之 TEM 圖。….….75
圖 5-12. Pt-TiO2/CS(1-5)B系列的電催化劑之 XRD 分析圖譜。…. …. …. ….….76
圖 5-13. Pt-TiO2/CS(1-5)B 系列電催化劑於 (a) 0.5 M H2SO4 與 (b) 0.5 M H2SO4 + 1 M CH3OH 水溶液中之 CV 圖,掃描速率為 50 mV/s。.. .. …… .. ..…..…79
圖 5-14. Pt-TiO2/CS(1-5)450B 系列的電催化劑之 Ti/(Ti+C) 真實重量百分率與 Pt/Ti 原子比和 Pt 顆粒大小與 EASA 比較圖。…………………………….80
圖 5-15. Pt-TiO2/CS(1-5)450B 系列的電催化劑之 Ti/(Ti+C) 真實重量比與 Pt/Ti 原子比和 MOR 效能比較圖。…………………………………………….….80
圖 5-16. Pt-TiO2/CS(2)450A、Pt-TiO2/C(2)80A、Pt-TiO2/CS(2)450B 、 Pt-TiO2/C(2)600B 和 Pt-TiO2/CS(4)450B 與 E-TEK Pt/C 電催化劑於飽和 CO 之 0.5 M H2SO4 水溶液之 CV 圖,掃描速率為 50 mV/s。…………………………………….83
圖 5-17. Pt-TiO2/CS(2)450A、Pt-TiO2/C(2)80A、Pt-TiO2/CS(2)450B 、 Pt-TiO2/C(2)600B、Pt-TiO2/CS(4)450B 與 E-TEK Pt/C 和 E-TEK PtRu/C 電催化劑於0.5 M H2SO4 + 1 M CH3OH 之 CA 曲線圖,定電位於 0.5 V vs. Ag/AgCl,掃描時間 1000 s,(a) 0~1000 s (b) 950~1000 s。……………….….84
圖A-1、(a) ~ (c) 為 Pt-TiO2/CS(2)A 系列電催化劑之 TEM 圖與粒徑分佈圖。....97
圖A-2、(a) ~ (c) 為 Pt-TiO2/C(2)A 系列電催化劑之 TEM 圖與粒徑分佈圖。….98
圖A-3、(a) ~ (c) 為 Pt-TiO2/CS(2)B 系列電催化劑之 TEM 圖與粒徑分佈圖。....99
圖A-4、(a) ~ (c) 為 Pt-TiO2/C(2)B 系列電催化劑之 TEM 圖與粒徑分佈圖。…100
圖A-5、(a) ~ (d) 為 Pt-TiO2/CS(1-5)B 系列電催化劑之 TEM 圖與粒徑分佈圖..102
表目錄
表 1-1. 燃料電池種類3………………………………………………………………3
表 2-1. Activity (A) and loss of oxygen reduction reaction activity (ORRloss) at 0.85V for Pt/TiO2 and Pt/C measuredafter potential cycling experiments.74………………11
表 2-2. Summary of particle size and electrochemical surface area(ECSA) measured under 0 and 2500 cycles after potential cycling between 0.6 and 1.4V for two Pt electrocatalysts.74……………………………………………………………………11
表 2-3. TiO2 相關電催化劑之整理………………………………………………23
表 4-1. TiO2/ C 奈米複合顆粒 SEM-EDS 之結果………………………….….37
表 4-2. TiO2/ C 奈米複合顆粒…………….........……………………………….....37
表 4-3. TiO2/ C 奈米複合顆粒之命名…….....………………………………….....42
表 5-1. Pt-TiO2/CS(2) A 和 Pt-TiO2/C(2) A 兩系列電催化劑之命名……….……..49
表 5-2. Pt-TiO2/CS(2)A 和 Pt-TiO2/C(2)A 兩系列電催化劑 EDS 之結果…..……50
表 5-3. Pt-TiO2/CS(2)A 和 Pt-TiO2/C(2)A 兩系列電催化劑之 Pt 平均粒徑…......51
表 5-4. Pt-TiO2/CS(2)A 和Pt-TiO2/C(2)A 兩系列電催化劑之 MOR 性質參數....59
表 5-5. Pt-TiO2/CS(2)B 和 Pt-TiO2/C(2)B 兩系列電催化劑之命名……………...60
表 5-6. Pt-TiO2/CS(2)B 和 Pt-TiO2/C(2)B 兩系列電催化劑 EDS 之結果…..……61
表 5-7. Pt-TiO2/CS(2)B 和 Pt-TiO2/C(2)B 兩系列電催化劑之 Pt 平均粒徑..62
表 5-8. Pt-TiO2/CS(2)B 和 Pt-TiO2/C(2)B 兩系列電催化劑之 MOR 性質參數…67
表 5-9. 綜合四系列 Pt-TiO2/C 電催化劑之 MOR 性質參數。….. ……………67
表 5-10. Pt-TiO2/CS(1-5)450B 系列的電催化劑之命名…..………………………70
表 5-11. TiO2/CS(1-5) 奈米複合顆粒SEM-EDS之結果……………………..……71
表 5-12. TiO2/CS(1-5) 奈米複合顆粒之性質比較……………………………..……72
表 5-13 Pt-TiO2/CS(1-5)450B 系列的電催化劑 EDS 之結果…………………72
表 5-14. Pt-TiO2/CS(1-5)450B 系列的電催化劑之 Pt平均粒徑……………..……73
表 5-15. Pt-TiO2/CS(1-5)450B 系列的電催化劑之 MOR 性質參…………..……..78
表 5-16. 綜合五系列最佳 MOR 效能電催化劑之性質參數……………..……..81

參考文獻 1. 黃鎮江, 燃料電池, 全華科技圖書股份有限公司 (2005)
2. 王建義, 燃料電池百科, 全華科技圖書股份有限公司 (2004)
3. 衣寶廉, 燃料電池-原理與應用, 五南圖書出版公司 (2007)
4. “DMFCs: From Fundamental Aspects to Technology Development”, Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, No2, 133-161.
5. “Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process”, Neto, A.O.; Dias, R. R.; Tusi, M. M.; Linardi, M.; Spinaće, E.V. J. Power Sources 2007, 166, 87–91.
6. “One-step preparation and characterization of PtRu (1:1)/C electrocatalysts by polyol method for polymer electrolyte fuel cells”, Lee, D.; Hwang, S.; Lee, I. J. Power Sources 2006, 160, 155–160.
7. “Modified polyol synthesis of PtRu/C for high metal loading and effect of post-treatment”, Lee, K.-S.; Park, H.-Y.; Cho, Y.-H.; Park, I.-S.; Yoo, S. Y.; Sung, Y.-E. J. Power Sources 2010, 195, 1031–1037.
8. “Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, Deivaraj, T. C.; Lee, J. Y. J. Power Sources 2005, 142, 43–49.
9. “A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electro-oxidation”, Zhao, Y.; Yang, X.; Tian, J.; Wang, F.; Zhan, L. J. Power Sources 2010, 195, 4634–4640.
10. “PAMAM-stabilized Pt–Ru nanoparticles for methanol electro-oxidation”, Gu, Y.; Wu, G.; Hu, X. F.; Chen, D. A.; Hansen, T.; Loye, H.-C.; Ploehn, H. J. J. Power Sources 2010, 195, 425–434.
11. “Effect of Reaction Atmosphere on the Electrocatalytic Activities of Pt/C and PtRu/C Obtained in a Polyol Process”, Li, H.; Sun, G.; Gao, Y.; Jiang, Q.; Jia, Z.; Xin, Q. J. Phys. Chem. C 2007, 111, 15192-15200.
12. “Nanostructured PtRu/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell”, Xu, W.; Lu, T.; Liu, C.; Xing, W. J. Phys. Chem. B 2005, 109, 14325-14330.
13. “Effect of Reduction Temperature on the Preparation and Characterization of Pt-Ru Nanoparticles on Multiwalled Carbon Nanotubes”, Chetty, R.; Xia, W.; Kundu, S.; Bron, M.; Reinecke, T.; Schuhmann, W.; Muhler, M. Langmuir 2009, 25, 3853-3860.
14. “Effects of Alloyed and Oxide Phases on Methanol Oxidation of Pt-Ru/C Nanocatalysts of the Same Particle Size”, Godoi, D. R. M.; Perez, .J.; Villullas, H. M. J. Phys. Chem. C 2009, 113, 8518–8525.
15. “Effect of PtRu alloying degree on electrocatalytic activities and stabilities”, Lee, K.-S.; Jeon, T.-Y.; Yoo, S.J.; Park, I.-S.; Cho, Y.-H.; Kang, S. H.; Choi, K. H.; Sung, Y.-E. Appl. Catal. B Environ. 2011, 102, 334–342.
16. “Effect of pH on PtRu electrocatalysts prepared via a polyol process on carbon nanotubes”, Ren, L.; Xing, Y. Electrochimica Acta 2008, 53, 5563-5568.
17. “Pt–Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell”, Salgado, J. R. C.; Alcaide, F.; Alvarez, G.; Calvillo, L.; Lazaro, M. J.; Pastor, E. J. Power Sources 2010, 195, 4022–4029.
18. “Effect of Ti addition to Pt/C catalyst on methanol electro-oxidation and oxygen electro-reduction reactions”, Jeon, K. M.; McGinn, P. J. J. Power Sources 2010, 195, 2664–2668.
19. “Preparation and characterization of carbon-supported PtTi alloy electrocatalysts”, Ding, E.; More, K. M.; He, T. J. Power Sources 2008, 175, 794–799.
20. “Titanium carbide nanoparticles supported Pt catalysts for methanol electrooxidation in acidic media”, Ou, Y.; Cui, X. ; Zhang, X.; Jiang, Z. J. Power Sources 2010, 195, 1365–136.
21. “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Grgur, B.; Markovic, N.; Ross, P.N. Electrochim. Acta 1998, 43, 3637-3644.
22. “Capping agent free synthesis of PtSn bimetallic nanoparticleswith enhanced electrocatalytic activity and lifetime”, Zheng, L.; Xiong, L.; Sun, J.; Li, J.; Yang, S.; Xia, J. Cataly.Commun. 2008, 9, 624–629.
23. “Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol
electrooxidation of direct alcohol fuel cells”, Xu, C.; Su, Y.; Tan, L.; Liu, Z.; Zhang, J.; Chen, S.; Jiang, S. P. Electrochim. Acta, 2009, 54, 6322–6326.
24. “Synthesis and Electrocatalytic Properties of Cubic Mn−Pt Nanocrystals”, Kang, Y.; Murray C. B. J. Am. Chem. Soc. 2010, 132, 7568–7569.
25. “On the role of Ru and Sn as promotors of methanol electro-oxidation”, Frelink, T.; Visscher, W.; Veen, J.A.R. Surf. Sci. 1995, 335, 353-360.
26. “Surface science studies of model fuel cell electrocatalysts”, Markovi, N.M.; Ross Jr, P.N.; Surf. Sci. Rep. 2002, 45, 117-229.
27. “Promotion of the electrocatalytic activity of a bimetallic platinum–ruthenium
catalyst by repetitive redox treatments for direct methanol fuel cell”, Huang , S.-Y.; Yeh, C.-T. J. Power Sources 2010, 195, 2638–2643.
28. “Electro-oxidation of ethanol and ethylene glycol on carbon-supported
nano-Pt and -PtRu catalyst in acid solution”, Chatterjee, M.; Chatterjee, A,; Ghosh, S.; Basumallick, I. Electrochi.Acta 2009, 54, 7299–7304.
29. “Experiment and Theory of Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru”, Rigsby, M. A.; Zhou, W.-P.; Lewera, A,; Duong, H. T.; Bagus, P.S.; Jaegermann,W.; Hunger, R.; Wieckowski, A. J. Phys. Chem. C 2008, 112, 15595–15601.
30. “Measurement of the Ru surface content of electrocodeposited PtRu electrodes with the electrochemical quartz crystal microbalance: Implications for methanol and CO electrooxidation”, Frelink, T. ; Visscher, W. ; Van Veen, J.A.R. ;, Langmuir, 1996, 12, 3702-3708.
31. “PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell”, Park, K.-W.; Choi, J.-H.; Lee, S.-A.; Pak, C.; Chang, H. Sung, Y.- E. J. Catal. 2004, 224, 236–242.
32. “A PtAu Nanoparticle Electrocatalyst for Methanol Electrooxidation
in Direct Methanol Fuel Cells”, Choi, J.-H.; Park, K.-W.; Park, I.-S.; Kim, K.; Lee, J.-S.; Sungc, Y.-E. J. Electrochem. Soc. 2006, 153, A1812-A1817.
33. “Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes”, J. Phys. Chem. B 2000, 104, 3518-3531.
34. “Adsorption of CO poison on fuel cell nanoparticle electrodes from
methanol solutions: a radioactive labeling study”, Waszczuk, P.; Wieckowski, A.; Zelenay, P.; Gottesfeld, S.; Coutanceau, C.; Leger, J.-M.; Lamy,C. J. Electroanal. Chem. 2001, 511, 55-64.
35. “Anode catalysts for enhanced methanol oxidation: An in situ XANES study of PtRu/C and PtMo/C catalysts”, Mylswamy, S.; Wang, C.Y.; Liu, R.S.; Lee, J.-F.; Tang, M.-J.; Lee, J.-J.; Weng, B.-J.; Chem. Phys. Lett. 2005, 412, 444-448.
36. “Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy”, Mukerjee, S.; Urian, R. C. Electrochim. Acta 2002, 47, 3219-/3231.
37. “Design and preparation of highly active carbon nanotube-supported sulfated TiO2 and platinum catalysts for methanol electrooxidation”, Song, H.; Xiao, P.; Qiu, X.; Zhu, W. J. Power Sources 2010, 195, 1610-1614.
38. “Ultrahigh stable carbon riveted Pt/TiO2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell”, Jiang, Z.-Z.; Wang, Z.-B.; Chu, Y.-Y. ; Gu, D.-M.; Yin, G.-P. Energy Environ. Sci. 2010, 4, 728-735.
39. “Preparation and characterization TiOx–Pt/C catalyst for hydrogen oxidation reaction”, Elezović, N. R.; Babić, B. M.; Vraćar, L. M.; Radmilović, V. R.; Krstajić, N. V. Phys. Chem. Chem. Phys. 2009, 11, 5192–5197.
40. “Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel Cells”, Xiong, L.; Manthiram, A. Electrochim. Acta 2004, 49, 4163–4170.
41. “Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell”, Shim, J.; Lee, C.-R.; Lee, H.-K.; Lee, J.-S.; Cairns, E. J. J. Power Sources 2001, 102, 172-177.
42. “Fabrication and Characterization of Pt/C-TiO2 Nanotube Arrays as Anode Materials for Methanol Electrocatalytic Oxidation”, Yang, L.; Xiao, Y.; Zeng, G.; Luo, S.; Kuang, S.; Cai, Q. Energy & Fuels 2009, 23, 3134–3138.
43. “Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts”, Lin, X.; Chen, J.; Liu, G.; Zhang, L.; Zhang, H.; Yi, B. J. Power Sources 2010, 195, 4098–4103.
44. “Effects of anatase TiO2 with different particle sizes and contents on the stability of supported Pt catalysts”, Jiang, Z.-Z.; Gu, D.-M.; Wang, Z.-B.; Qu, W.-L.; Yin, G.-P.; Qian, K.-J. J. Power Sources 2011, 196, 8207– 8215.
45. “Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell”, Kraemer, S.; Wikander, K.; Lindbergh, G.; Lundblad, A.; Palmqvist, A.E.C. J. Power Sources 2008, 180, 185–190.
46. “Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support”, Song, H.; Qiu, X.; Li, F.; Zhu, W.; Chen, L. Electrochemistry Communications 2007, 9, 1416–1421.
47. “Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation”, Chen, C.-S.; Pan, F.-M. Appl. Catal. B Environ.2009, 91, 663–669.
48. “Nb-doped TiO2 as a support of Pt and Pt–Ru anode catalyst for PEMFCs”, Gojković, S. L.; Babić, B. M.; Radmilović, V. R.; Krstajić, N. V. J. Electroanal. Chem. 2010, 639, 161–166.
49. “Excellent dispersion and electrocatalytic properties of Pt nanoparticles supported on novel porous anatase TiO2 nanorods”, Guo, X.; Guo, D.-J.; Qiu, X.-P.; Chen, L.-Q.; Zhu, W.-T. J. Power Sources 2009, 194, 281–285.
50. “Pt nanoparticles deposited on TiO2 based nanofibers: Electrochemical stability and oxygen reduction activity”, Bauer, A.; Lee, K.; Song, C.; Xie, Y.; Zhang, J.; Hui, R. J. Power Sources 2010, 195, 3105–3110.
51. “Building three-dimensional Pt catalysts on TiO2 nanorod arrays for effective ethanol electrooxidation”, He, X.; Hu, C. J. Power Sources 2011, 196, 3119–3123.
52. “Direct Oxidation of Methanol on Pt Nanostructures Supported on Electrospun Nanofibers of Anatase”, Formo, E.; Peng, Z.; Lee, E.; Lu, X.; Yang, H.; Xia, Y. J. Phys. Chem. C 2008, 112,9970-9975.
53. “Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells”, Huang, S.-Y.; Ganesan, P.; Popov, B. N. Appl. Catal. B Environ. 2010, 96, 224–231.
54. “Synthesis and Electrochemical Oxygen Reduction of Platinum Nanoparticles Supported on Mesoporous TiO2“, Shanmugam, S.; Gedanken A. J. Phys. Chem. C 2009, 113, 18707–18712.
55. “Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2”, Bauer, A.; Song, C.; Ignaszak, A.; Hui, R.; Zhang, J. Chevallier, L.; Jones, D.; Roziere, J. Electrochim. Acta 2010, 55, 8365–8370.
56. “Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation”, Song, Y.-Y.; Gao, Z.-D.; Schmuki, P. Electrochem. Commun. 2011,13, 290–293.
57. “Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation”, Xing, L.; Jia, J.; Wang, Y.; Zhang, B.; Dong, S. Int. J. Hydrogen Energy 2010, 35, 12169–12173.
58. “Unique Electrochemical Catalytic Behavior of Pt Nanoparticles Deposited on TiO2 Nanotubes”, Tian, M.; Wu, G.; Chen, A. ACS Catal. 2012, 2, 425−432.
59. “Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell”, Gustavsson, M.; Ekstrom, H.; Hanarp, P.; Eurenius, L.; Lindbergh, G.; Olsson, E.; Kasemo,B. J. Power Sources 2007, 163, 671–678.
60. “Preparation and methanol oxidation catalysis of Pt-CeO2 electrode”, Campos, C.L.; Roldan, Z.; Aponte, M.; Ishikawa, Y.; Cabrera, C.R.; J. Electroanal. Chem. 2005, 581, 206-215.
61. “Preparation and anode property of Pt-CeO2 electrodes supported on carbon black for direct methanol fuel cell applications”, Takahashi, M.; Mori, T.; Vinu, A.; Kobayashi, H.; Drennan, J.; Ou, D.-R.; J. Mater. Res. 2006, 21, 2314-2322.
62. “Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles”, Wang, J.; Deng, X.; Xi, J.; Chen, L.; Zhu, W.; Qiu,X.; J. Power Sources 2007, 170, 297-302.
63. “Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles”, Wang, J.; Deng, X.; Xi,J.; Chen, L.; Zhu, W.; Qiu, X.; J. Power Sources 2007, 170, 297-302.
64. “Pt-CeO2/C anode catalyst for direct methanol fuel cells”, Scibioh, M.A.; Kim, S.-K.; Cho, E.A.; Lim, T.-H., Hong, S.-A.; Ha, H.Y.; App. Cata. B: Envir. 2008, 84,773-782.
65. “Preparation of Pt/CeO2/HCSs anode electrocatalysts for direct methanol fuel cells”, Zhao, Y.; Wang, F.; Tian, J.; Yang, X.; Zhan, L.; Electrochim. Acta 2010, 55, 8998-9003.
66. “The role of WOx ad-component to Pt and PtRu catalyst in the electrochemical CH3OH oxidation reaction”, Yang, L. X.; Bock, C.; MacDougall, B.; Park, J.; J. Appl. Electrochem. 2004, 34, 427-438
67. “Synthesis and Characterization of Pt-WO3 as Methanol Oxidation Catalysts for Fuel Cells”, Jayaraman, S.; Jaramillo, T.F.; Baeck, S.-H.; McFarland, E.W.; J. Phys. Chem. B 2005, 109, 22958-22966. 137
68. “Platinum/Mesoporous WO3 as a Carbon-Free Electrocatalyst with Enhanced Electrochemical Activity for Methanol Oxidation ”, Cui, X.; Shi, J.; Chen, H.; Zhang, L.; Guo, L.; Gao, J.; Li, J.; J. Phys. Chem. B 2008, 112, 12024-12031.
69. “Unique CO-tolerance of Pt–WOx materials”, Micoud, F.; Maillard, F.; Gourgaud, A.; Chatenet, M.; Electrochem. Commun. 2009, 11, 651-654.
70. “Electrocatalytic Activity and CO Tolerance Properties of Mesostructured Pt/WO3 Composite as an Anode Catalyst for PEMFCs”, Xiangzhi, C.; Limin, G.; Fangming, C.; Qianjun, H.; Jianlin, S.; J. Phys. Chem. C 2009, 113, 4134-4138.
71. “Methanol oxidation reaction on PtSnO2 obtained by microwave-assisted chemical reduction”, Sandoval-Gonzalez, A.; Borja-Arco, E.; Escalante, J.; Jimenez-Sandoval, O.; Gamboa, S.A. Int. J. Hydrogen Energy 2012,37 , 1752-1759.
72. “Graphitized mesoporous carbon supported Pt–SnO2 nanoparticles as a catalyst for methanol oxidation”, Cui, X.; Cui, F.; He, Q.; Guo, L.; Ruan, M.; Shi, J. Fuel 2010, 89, 372–377.
73. “Enhanced Photoelectrocatalytic Activity of Methanol Oxidation on TiO2-Decorated Nanoporous Gold”, Jia, C.; Yin, H.; Ma, H.; Wang, R.; Ge, X.; Zhou, A.; Xu, X.; Ding, Y. J. Phys. Chem. C 2009, 113, 16138-16143.
74. “Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell”, Huang, S.-Y.; Ganesan, P.; Popov, B. N. Appl. Catal. B 2011, 102, 71–77.
75. “Fabrication of mesoporous polymer using soft template method”, Jang, J.; Bae, J. Chem. Commun. 2005, 1200–1202.
76. “Novel porous anatase TiO2 nanorods and their high lithium electroactivity”, Bao, S.J.; Bao, Q.L.; Li, C.M.; Dong, Z.L. Electrochem. Commun. 2007, 9, 1233-1238.
77. “Fabrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation”, He, D.; Yang, L.; Kuang, S.; Cai, Q. Electrochem. Commun. 2007, 9, 2467-2472.
78. “Methanol oxidation on carbon-supported Pt–Ru and TiO2 (Pt–Ru/TiO2/C) electrocatalyst prepared using polygonal barrel-sputtering method”, Hirakawa, K.; Inoue, M.; Abe, T. Electrochim. Acta 2010, 55, 5874–5880.
79. “Conformal Nano-Sized Inorganic Coatings onMesoporous TiO2 Films for Low-TemperatureDye-Sensitized Solar Cell Fabrication”, Grinis, L.; Kotlyar, S.; Ruhle, S.; Grinblat, J.; Zaban, A. Adv. Funct. Mater. 2010, 20, 282–288.
80. “Preparation and Characterization of Tungsten Hexachloride Derived Pt-WO3/C Electrocatalysts for Methanol Oxidation Reaction”, 王志仲, 淡江大學化學工程與材料工程學系碩士論文, 民國101年.
81. “Microwave-polyol synthesis and electrocatalytic performance of Pt/grapheme nanocomposites”, Liao, C.-S.; Liao, C.-T.; Tso, C.-Y.; Shy, H.-J. Mater. Chem. Phys. 2011, 130, 270–274.
82. “Comparison of high surface Pt/C catalysts by cyclic voltammetryA. Pozio, M. De Francesco”, Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 105, 13-19.
83. “Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation”, Huang, H. X.; Chen, S. X.; Yuan, C. J. Power Sources 2008, 175, 166–174.
84. “Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation”, Chu, Y.-Y.; Wang, Z.-B.; Gu, D.-M.; Yin, G.-P. J. Power Sources 2010, 195, 1799–1804.
85. “Pt Nanorods Aggregates with Enhanced Electrocatalytic Activity toward Methanol Oxidation”, He, Y.-B.; Li, G.-R. Wang, Z. L.; Ou, Y. N.; Tong, Y.-X. J. Phys. Chem. C 2010, 114, 19175-19181.
86. “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering”, Miao, L.; Jin, P.; Kaneko, K. ; Terai, A.; Nabatova-Gabain, N.; Tanemura S. Appl. Surf. Sci. 2003, 212–213, 255–263.
87. “TiO2 Branched Nanostructure Electrodes Synthesized by Seeding Method
for Dye-Sensitized Solar Cells”, Oh, J.-K.; Lee, J.-K.; Kim, H.-S.; Han, S.-B.; Park, K.-W. Chem. Mater. 2010, 22, 1114–1118.
88. “Transformation of brookite-type TiO2 nanocrystals to rutile: correlation
between microstructure and photoactivity”, Bakardjieva, S.; Stengl, V.; Szatmary, L.; Subrt, J.; Lukac, J.; Murafa, N.; Niznansky, D.; Cizek, K.; Jirkovsky, J.; Petrova, N. J. Mater. Chem. 2006, 16 , 1709–1716.
89. “Synthesis of titanium dioxide nanoparticles by reactive DC magnetron sputtering”, Dreesen, L.; Colomer, J.-F.; Limage, H.; Giguere, A.; Lucas, S. Thin Solid Films 2009, 518, 112–115.
90. “Aligned TiO2 Nanorods and Nanowalls”, Wu, J.-J.;Yu, C.-C. J. Phys. Chem. B 2004, 108, 3377-3379.
91. “Phase Properties of Carbon-Supported Gold-Platinum Nanoparticles with Different Bimetallic Compositions”, Luo, J.; Maye, M. M.; Petkov, V.; Kariuki, N. N.; Wang, L.; Njoki, P.; Mott, D.; Lin, Y.; Zhong, C. J. Chem. Mater. 2005, 17, 3086-3091.
92. “Preparation of Au/Pt Bimetallic Nanoparticles in Water-in-Oil Microemulsions”, Wu, M. L.; Chen, D. H.; Huang, T. C. Chem. Mater. 2001, 13, 599-606.
93. “Carbon-supported Pt–Ru catalysts prepared by the Nafion stabilized alcohol-reduction method for application in direct methanol fuel cells”, Sarma, L. S.; Lin, T. D.; Tsai, Y.-W.; Chen, J. M. ; Hwang, B. J. J. Power Sources 2005, 139, 44-54.
94. “Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells”, Liu, Z. L.; Gan, L. M.; Hong, L.; Chen, W. X.; Lee, J. Y. J. Power Sources 2005, 139, 73-78.
95. “Development and Investigation of Sol–Gel Solutions for the Formation of TiO2 Coatings”, Harizanovl, O.; Harizanova, A. Sol. Energy Mater. Sol. Cells 2000, 63, 185-195.
96. “Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers”, Shim, J.-W., Park, S.-J.; Ryu, S.-K. Carbon 2001, 39, 1635–1642.
97. “Citric acid functionalized carbon materials for fuel cell applications”, Poh, C. K.; Lim, S. H.; Pan, H.; Lin, J.; Lee, J. Y.; J. Power Sources 2008, 176, 70-75.
98. “Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation”, Kyotani, T.; Nakazaki, S.; Xu, W. H.; Tomita, A. Carbon 2001, 39, 782–785.
99. “Effect of different oxidizing agent treatments on the surface properties of activated carbons”, Pradhan, B. K.; Sandle, N. K. Carbon 1999, 37, 1323–1332.
100. “Platinum Deposition on Carbon Nanotubes via Chemical Modification”, Yu, R.; Chen, L.; Liu, Q.; Lin, J.; Tan, K.-L.; Ng, S. C.; Chan, H. S. O.; Xu, G.-Q.; Hor, T. S. Chem. Mater. 1998, 10, 718-722.
101. “Activated carbon oxygen content influence on water and surfactant adsorption”, Pendleton, P.; Wu, S. H.; Badalyan, A.; J. Colloid Interface Sci. 2002, 246, 235-240.
102. “Structures of inorganic polymers in sol-gel processes based on titanium oxide”, Kallala, M.; Sanchez, C.; Cabane, B. Phys. Rev. E 1993, 48,3692-3704.
103. “Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions”, Hayden, B. E.; Malevich, D. V.; Pletcher, D. Electrochem. Commun. 2001, 3, 395–399.
104. “Unique Electrochemical Catalytic Behavior of Pt Nanoparticles Deposited on TiO2 Nanotubes”, Tian, M.; Wu, G.; Chen, A. ACS Catal. 2012, 2, 425−432.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信