§ 瀏覽學位論文書目資料
  
系統識別號 U0002-3107200523461100
DOI 10.6846/TKU.2005.00796
論文名稱(中文) 酵母菌(Pichia pastoris)的基因表現
論文名稱(英文) Gene Expression in Yeast(Pichia pastoris)
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 秦嘉志
研究生(英文) Chia-Chi Chin
學號 692171076
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-15
論文頁數 77頁
口試委員 指導教授 - 簡素芳
委員 - 王啟銘
委員 - 張可中
關鍵字(中) α-半乳糖水解酵素
基因表現
表現質體
蛋白質純化
基因重組
關鍵字(英) gene expression
Pichia pastoris
clones
integrate
oligosaccharide
transformants
enzyme activity
第三語言關鍵字
學科別分類
中文摘要
α-半乳糖水解酵素(EC.3.2.1.22)能水解B型紅血球表面抗
原的α-半乳糖基,使B型紅血球可以轉換成O型紅血球。為了要
大量表現α-半乳糖水解酵素做紅血球轉型以利輸血之用,我們將
稻米的α-半乳糖水解酵素基因分別重組到表現質體pPICZαA及
pPIC9K上。並分別轉殖到酵母菌GS115及SMD1168內,目前挑選出來
表現最多的菌株為pPIC9K-αgal in SMD1168。目前可以表現在細胞內
每公升10毫克的α-半乳糖水解酵素;而細胞外的酵素每公升為1毫克。
分泌在細胞外的蛋白質可以省去很多純化過程,我們目前試著再改變培養
條件以增加產率。包括使用YNB-最簡單的培養基,加必要胺基酸及
乳糖;或增加供氧量等方式。發酵槽的培養可得到約10倍的基因表現
,我們接著應該一試。將來也可能試用昆蟲細胞、植物細胞及哺乳類
動物細胞,以達到大量表現酵素的目的。
英文摘要
α-galactosidase(EC. 3.2.1.22) is able to cleave the 
terminal α-galactose from surface oligosaccharide chain of  
B red blood cells, thus B type RBC can be converted into O type RBC. 
In order to gain large quantity of enzyme for this purpose, 
we tried to clone the rice α-galactosidase gene into 
each of the pPICZαA and pPIC9K vector(Invitrogen®), 
and to expression the enzyme in both GS115 and SMD1168 strain. 
The transformants from pPIC9K/SMD1168 was obtained. 
Expression the transformants in flask culture,
most enzyme activity was found intracellularly (10 mg 
per liter culture);while there is about 1 mg per liter 
culture of the enzyme activity was secreted in the media. 
The secreted enzyme would be easier for further media 
purification. From SDS-PAGE, the secreted enzyme revealed 
as a major band. We have to try some other culture conditions to improve this results.
第三語言摘要
論文目次
目錄:
誌謝
中文摘要                                             Ⅰ
英文摘要                                             Ⅱ
目錄                                                 Ⅲ
圖表目錄                                             Ⅴ
索引                                                 Ⅶ
一、緒論                                             
1.α-半乳糖水解酵素(α-galactosidase)的簡介           1
2. α-半乳糖水解酵素的應用                           1
3.酵母菌(Pichia pastoris)蛋白質表現系統簡介         6
4.使用嗜甲基酵母菌的優點                           10
5.研究目標                                         12
二、實驗材料
1.菌種與質體                                       13
2.培養基                                           13
3.酵素與受質                                       14
4.儀器                                             16

三、實驗方法
1.培養基配製                                       17
2.酵母菌表現質體及寄主的選擇                       22
3.製備α-半乳糖水解酵素基因                         27
4.製備表現質體                                     31
5.表現質體電導轉型到酵母菌                         37
6.測試培養條件                                     47
7.用SDS-PAGE分析表現的酵素                         50
8.紅血球轉型實驗                                   53
四、實驗結果與討論                                  
1.製備α-半乳糖水解酵素基因                         54
2.製備表現質體                                     56
3.表現質體電導轉型到酵母菌                         59
4.測試培養條件                                     62
5.用SDS-PAGE分析表現的酵素                         70
6.紅血球轉型實驗                                   71
五、結論與未來展望                                 72
六、參考資料                                       75


圖表目錄:
圖1. 血型抗原糖鏈結構                                    3
圖2.  GL-3在人體的正常分解過程                           5
圖3. Pichia pastoris的AOX 1 promoter                     7
圖4. Gene insertion at AOX 1,gene replacement at AOX1。 9
圖5. Gene multi-integration                              8
圖6.動物細胞與酵母菌表現的糖鏈比較                      11
圖7. Zeocin結構                                         14
圖8. G418結構                                           15
圖9. pPICZαA and pPIC9K map                             24
圖10-a. pPICZαA multiple cloning site                   25
圖10-b. pPIC9K multiple cloning site                    26
圖11. PCR洋菜電泳                                       55
圖12. 回收流程                                          30
圖13.表現質體gene cloning                               31
圖14.水解pPICZαA-αgal電泳                               57
圖15.水解pPIC9K-αgal電泳                                57
圖16.菌種劃盤在α-X-gal plate反應結果                    60
圖17.multicopy 洋菜電泳                                 61
圖18. MeOH對酵母菌培養的菌數和活性表現的影響            62 
圖19. SDS-PAGE 分析誘導後培養基結果                     70
圖20. 血球凝聚實驗結果                                  71
圖21: 2 copies gene vector製作                         74

表1. 血液中血球跟抗體的凝聚現象                           4
表2.Insert基因定序與稻米α-半乳糖水解酵素基因比對         59
表3.不同溫度的誘導結果                                   64
表4.不同菌數的誘導結果                                   66
表5.不同培養基的誘導結果                                 68
表6.不同菌種的誘導結果                                   69
表7.使用Pichia pastoris表現的酵素                        72






索引:
中文             ;英文                  頁數
α-半乳糖水解酵素;α-galactosidase        1
血凝現象         ;hemagglutination       3
法布瑞氏症       ;Fabry disease          4
嗜甲基酵母菌     ;methylotrophic yeast   6
整合             ;integrate(integration) 7
包覆體            ;inclution body         12
再摺疊           ;refolding              12
轉殖             ;transform              32
勝任細胞         ;competent cell         32
培養             ;incubate               32
熱休克           ;heat-shock             32
篩選             ;select                 33
質體分離         ;plasmid DNA isolation  33
洗提             ;elute                  33
電導轉型         ;electroporation        39
誘導             ;induce                 44
轉型株           ;transformant           45

轉殖(實驗方法)                            32
質體分離(實驗方法)                        33
電導轉型(實驗方法)                        39
分離酵母菌染色體DNA(實驗方法)             45
參考文獻
1.Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine. Genome evolution in yeasts. Nature. 2004 ;430(6995):35-44.
2.Turakainen H, Kristo P, Korhola M. Consideration of the evolution of the Saccharomyces cerevisiae MEL gene family on the basis of the nucleotide sequences of the genes and their flanking regions. Yeast. 1994 ;10(12):1559-68.
3.Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G.. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. U.S.A. 2002 ;99(22):14422-7.
4.Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 2001; 413(6858):848-52.
5.Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y. Rice genome research program, national institute of agrobiological sciences, 1-2, kannondai 2-chome. Nature. 2002; 420(6913):312-6.
6.Zhu A, Goldstein J. Cloning and functional expression of a cDNA encoding coffee bean alpha-galactosidase. Gene. 1994; 140(2):227-31. 
7.Zhu A, Monahan C, Zhang Z, Hurst R, Leng L, and Goldstein J. High-level Expression and Purification of Coffee Bean alpha-Galactosidase Produced in the Yeast Pichia Pastoris. Arch. Biochem. Biophys. 1995; 324(1): 65-70.
8.Kim WD, Kobayashi O, Kaneko S, Sakakibara Y, Park GG, Kusakabe I, Tanaka H, Kobayashi H. α-galactosidase from culture rice(Oryza sativa L. var. Nipponbare) cells. Phytochemistry. 2002;61:621-630.
9.Smet B, Hesta M, Seynaeve M, Janssens G, Vanrolleghem P, Wilde RO. The influence of supplementalα-galactosidase and phytase in a vegetable ration for dogs on the digestibility of organic components and phytate phosphorus. Journal of Animal Physiology & Animal Nutrition, 1999;81(1):1-8.
10.Chien SF, Marie LC. The conversion of group B red blood cells into group O by an α-D-galactosidase from taro(Colocasia esculenta). Carbohydrate Research. 1991; 217: 191-200.
11.Zhu A, Leng L, Monahan C, Zhang Z, Hurst R, Lenny L, Goldstein J. Characterization of recombinantα-galactosidase for use in seroconversion from blood group B to O of human erythrocytes. Arch. Biochem. Biophys. 1996; 327( 2): 324-329.
12.Calcutt MJ, Hsieh HY, Chapman LF, Smith DS. Identification, molecular cloning and expression of an α-N-acetylgalactosaminidase gene from Clostridium perfringens. FEMS Microbiology Letters, 2002;214:77-80.
13.Copbell NA, Reece JB, Mitchell LG, Taylor MR. Biology. Benjamin Cummings. 2003; 169.
14.Ohshima T, Murray GJ, Nagl JW, Quirk JM, Kraus MH, Norman W. Barton, Roscoe O. Brady D, Kulkarni AB. Structural organization and expression of the mouse gene encoding α-galactosidase A. Gene. 1995; 166:277-280.
15.Daly R, Hearn MTW. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Jounal of Molecular Recognition. 2004. 
16.Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA. Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene. 1991; 105:205-212.
17.Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA. High-level expression  of Tetanus toxin fragment c in Pichia pastoris strains containing multiple tandem integrations of the gene.  Bio/Technology. 1991; 9: 455-460.
18.Sreekrishna K, Nelles L, Potenz R, Cruze J, Mazzaferro P, Fish W, Fuke M, Holden K, Phelps D, Wood P. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry. 1989 ;28(9):4117-25.
19.Brown TA. Gene Cloning. Stanley Thornes(Publishers). 1995;269-270.
20.Sambrook, Fritsch, Maniatis. Molecular Cloning. Cold Spring Harbor Laboratory. 1990 ; 3:A1-A3.
21.Hagenson MJ, Holden KA, Parker KA, Wood PJ, Cruze JA, Fuke M, Hopkins TR,  Stroman DW. Expression of streptokinase in Pichia pastoris Yeast. Enzyme Microbiol. Technol. 1989;11: 650-656.
22.Brandes HK, Hartman FC, Lu TYS, Larimer FW. Efficient Expression of the gene for spinach phosphoribulokinase in Pichia pastoris and utilization of the recombinant enzyme to explore the role of regulatory cysteinyl residues by site-directed mutagenesis. 1996; J. Biol. Chem. 271: 6490-6496.
23.Tschopp JF, Sverlow G, Kosson R, Craig W, Grinna L. High level secretion of glycosylated invertase in the methylotrophic yeast Pichia pastoris. 1987;Bio/Technology 5: 1305-1308.
24.Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Velicelebi G, Harpold MM, Thill GP. Continuous production of a novel lysozyme via secretion from the yeast Pichia pastoris. 1989; Bio/Technology 7: 160-164.
25.Paifer E, Margolles E, Cremata J, Montesino R, Herrera L, Delgado JM. Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. 1994; Yeast 10: 1415-1419.
26.Guo W, Gonzalez-Candelas L, Kolattukudy PE. Cloning of a new pectate lyase gene pelC from fusarium solani f. sp. pisi (Nectria haematococca, Mating Type VI) and characterization of the gene product expressed in Pichia pastoris. 1995; Arch. Biochem. Biophys 323: 352-360.
27.Gilbert SC, Urk van H, Greenfield AJ, McAvoy MJ, Denton KA, Coghlan D, Jones GD, Mead DJ. Increase in copy number of an integrated vector during continuous culture of Hansenula polymorpha expressing functional human haemoglobin. 2005; Yeast 10: 1569 – 1580.
28.Cregg JM, Vedvick TS, Raschke WC. Recent advances in the expression of foreign gene in Pichia pastoris. Bio/technology. 1993; 11: 905-910
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信