淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-3105201113483500
中文論文名稱 以自我組織映射為基礎之社會網絡建構法
英文論文名稱 A Self-Organizing Approach for Social Networks Pre-Construction
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士班
系所名稱(英) Department of Business Administration
學年度 99
學期 2
出版年 100
研究生中文姓名 林子翔
研究生英文姓名 Tzu-Hsiang Lin
學號 698610853
學位類別 碩士
語文別 中文
口試日期 2011-05-09
論文頁數 144頁
口試委員 指導教授-張瑋倫
委員-李月華
委員-吳怡瑾
中文關鍵字 社會網絡  社會網絡分析  社會網絡建構  自我組織映射分群法 
英文關鍵字 Social Network  Social Network Analysis  Social Network Construction  Self-Organization Maps 
學科別分類 學科別社會科學管理學
中文摘要 團體存在於日常生活的網絡或組織當中,團體符合了社會網絡的三個組成要素:行為者、關係以及連結;傳統社會網絡分析的方式,必頇透過問卷或是訪談等資料蒐集的方式,取得行為者間的關係與連結,藉此建構出社會網絡。過去已有許多研究針對社會網絡的形成進行探討,但皆以行為者間的關係與連結進行社會網絡的建構;本研究詴圖突破過去以行為者的關係與連結建構社會網絡的模式,設計透過個人基本資料自動化預先建構社會網絡的方法,並針對預先建構的社會網絡進行行為者中心性的分析。本研究的主要目的為:(1)在團體形成前預先自動化建構出社會網絡;(2)針對預先建構的社會網絡進行分析,找出團體中的關鍵人物;(3)以自我組織映射之非監督式分群法(SOM)為網絡分析之基礎。本研究所採用的研究對象,為淡江大學企管系大學部一到四年級的A班學生;以自動化的流程建構出網絡後,針對預先建構的網絡與實際網絡中,程度中心性、中介中心性以及接近中心性三類型的關鍵人物進行對照,檢測預先建構的網絡的準確度評估。結果顯示,其中以中介中心性在實際網絡中的相符程度最高,四個年級中介中心性的帄均準確度為89%;其次為程度中心性,四個年級程度中心性的帄均準確度為73%,且程度中心性的準確度在四個年級中的起伏程度最小,最不受到不同年級的影響;接近中心性的準確度是最低的,四個年級的接近中心性帄均準確度為70%,在四個年級的起伏程度是最大的,受到不同的四個年級的影響最大;影響預先建構的網絡與實際網絡間準確度的原因,本研究主要歸納為三項中心性本身所觀察的角度,以及以第三者判定一行為者中心性的難易程度;實際生活中外在環境的影響;以及網絡在團體發展階段中所處的階段。本研究主要貢獻在於提出以SOM分群法為基礎的社
會網絡自動建構流程,在網絡形成前預先建構出網絡,並針對預先建構出的網絡進行三項中心性的分析,提供給管理者一個對於團體形成前以及未來發展,一個有效管理的參考模式。
英文摘要 Social networks exist in our daily life in the organizations. There are three elements of social network: actors, ties (linkages) and relationships. The traditional of data collection in social network analysis uses questionnaires or interview to construct the social networks by discovering the linkages and relationships among the actors. The existing researches discussed the formation of social networks; however, they are all based on the existed linkages and relationships. This research proposes a novel way to construct social network which is merely based on personal information. Next, we conduct social network analysis via the pre-constructed social network. The purposes of this paper are: (1) pre-constructing the social network automatically before the group formation, (2). conducting the social network analysis based on the pre-constructed social network and identifying the key persons of the social network, and (3) clustering data into groups automatically based on self-organization maps (SOM). This research sampled four classes from first year to fourth year from the department of business administration of Tamkang University in Taiwan. After the pre-construction of social networks, verify key persons via three indicators (degree centrality, betweeness centrality and closeness centrality) between pre-constructed and real social networks. In addition, this work evaluates the accuracy in terms of three centralities. The result shows that the accuracy of betweenness centrality is the highest (89%). The second highest accuracy is degree centrality (73%). Furthermore, the difference of accuracy among four classes is insignificant. The accuracy of closeness centrality is the lowest (70%). Moreover, the difference of accuracy among four classes is significant. In summary, this research proposes an innovative approach which can automatically pre-construct the social network for an unknown group and verify key persons. The proposed method not only provides a different way to construct the social network but also assist managers preview the network and identify key persons proactively.
論文目次 目錄
目錄............................................................................................................. I
表次.......................................................................................................... III
圖次............................................................................................................ V
第一章 緒論 .............................................................................................. 1
第一節 研究背景.................................................................................................. 1
第二節 研究動機.................................................................................................. 3
第三節 研究問題與目的...................................................................................... 6
第二章 文獻探討 .................................................................................... 10
第一節 資料分群法(Data Clustering) ................................................................ 10
第二節 社會網絡理論(Social Network Theory) ............................................... 16
第三節 社會網絡分析(Social Network Analysis) ............................................. 24
第三章 研究方法 .................................................................................... 32
第一節 研究架構................................................................................................ 32
第二節 自我組織映射(Self-Organization Maps, SOM) .................................... 36
第三節 社會網絡分析(Social Network Analysis, SNA) ................................... 40
第四章 資料分析 .................................................................................... 44
第一節 資料來源................................................................................................ 44
第二節 資料敘述................................................................................................ 44
第三節 編碼方式................................................................................................ 47
第四節 SOM分群設定 ...................................................................................... 48
第五節 社會網絡建構........................................................................................ 49
第六節 一年級之社會網絡................................................................................ 50
第七節 二年級之社會網絡................................................................................ 57
第八節 三年級之社會網絡................................................................................ 64
第九節 四年級之社會網絡................................................................................ 71
第五章 綜合分析 .................................................................................... 78
第一節 準確度指標............................................................................................ 78
II
第二節 一年級訪談............................................................................................ 80
第三節 二年級訪談............................................................................................ 85
第四節 三年級訪談............................................................................................ 90
第五節 四年級訪談............................................................................................ 94
第六節 綜合比較分析...................................................................................... 100
第六章 結論 .......................................................................................... 106
第一節 研究結論.............................................................................................. 106
第二節 管理與實務意涵.................................................................................. 109
第三節 研究限制.............................................................................................. 111
參考文獻 ................................................................................................ 113
附錄......................................................................................................... 117

表次

表2-1 各學者對於分群法研究的比較 ..................................................................... 14
表2-2 社會網絡理論來源之領域與比較 ................................................................. 17
表2-3 社會網絡理論特性與概念 ............................................................................. 20
表2-4 各學者對於社會網絡理論研究之比較 ......................................................... 22
表2-5 蒐集社會網絡分析資料之方法與比較 ......................................................... 27
表2-6 中心性綜合概念 ............................................................................................. 28
表2-7 各學者對社會網絡分析研究之比較 ............................................................. 30
表4-1 編碼方式 ......................................................................................................... 47
表4-6 一年級全班中心性最高與最低者 ................................................................. 55
表4-7 一年級集群A中心性最高與最低者 ............................................................ 56
表4-8 一年級集群B中心性最高與最低者............................................................. 56
表4-9 一年級集群C中心性最高與最低者............................................................. 56
表4-10 一年級集群D中心性最高與最低者 .......................................................... 56
表4-15 二年級全班中心性最高與最低者 ............................................................... 63
表4-16 二年級群集A中心性最高與最低者 .......................................................... 63
表4-17 二年級群集B中心性最高與最低者........................................................... 63
表4-18 二年級群集C中心性最高與最低者........................................................... 63
表4-19 二年級群集D中心性最高與最低者 .......................................................... 64
表4-24 三年級全班中心性最高與最低者 ............................................................... 70
表4-25 三年級群集A中心性最高與最低者 .......................................................... 70
表4-26 三年級群集B中心性最高與最低者........................................................... 70
表4-27 三年級群集C中心性最高與最低者........................................................... 70
表4-32 四年級全班中心性最高與最低者 ............................................................... 76
表4-33 四年級集群A中心性最高與最低者 .......................................................... 77
表4-34 四年級集群B中心性最高與最低者........................................................... 77
表4-35 四年級集群C中心性最高與最低者........................................................... 77
表4-36 四年級集群D中心性最高與最低者 .......................................................... 77
表5-1 一年級程度中心性對照 ................................................................................. 81
表5-2 一年級中介中心性對照 ................................................................................. 82
表5-3 一年級接近中心性對照 ................................................................................. 83
表5-4 二年級程度中心性對照 ................................................................................. 85
表5-5 二年級中介中心性對照 ................................................................................. 87
表5-6 二年級接近中心性對照 ................................................................................. 88
表5-7 三年級程度中心性對照 ................................................................................. 90
表5-8 三年級中介中心性對照 ................................................................................. 92
表5-9 三年級接近中心性對照 ................................................................................. 93

表5-10 四年級程度中心性對照 ............................................................................... 95
表5-11 四年級中介中心性對照 ............................................................................... 96
表5-12 四年級接近中心性對照 ............................................................................... 98
表4-2 一年級SOM分群結果................................................................................. 117
表4-3 一年級程度中心性 ....................................................................................... 118
表4-4 一年級中介中心性 ....................................................................................... 120
表4-5 一年級接近中心性 ....................................................................................... 122
表4-11 二年級SOM分群結果 ............................................................................... 124
表4-12 二年級程度中心性 ..................................................................................... 125
表4-13 二年級中介中心性 ..................................................................................... 127
表4-14 二年級接近中心性 ..................................................................................... 129
表4-20 三年級SOM分群結果............................................................................... 131
表4-21 三年級程度中心性 ..................................................................................... 132
表4-22 三年級中介中心性 ..................................................................................... 134
表4-23 三年級接近中心性 ..................................................................................... 136
表4-28 四年級SOM分群結果............................................................................... 138
表4-29 四年級程度中心性 ..................................................................................... 139
表4-30 四年級中介中心性 ..................................................................................... 141
表4-31 四年級接近中心性 ..................................................................................... 143


圖次

圖1-1組織階層圖與關係網絡圖 ................................................................................ 4
圖2-1 以二維呈現分群結果 ..................................................................................... 10
圖2-3 傳統分群機制 ................................................................................................. 12
圖2-4 非監督學習的分群機制 ................................................................................. 12
圖2-5 利用圖形呈現社會網絡關係 ......................................................................... 25
圖2-6 利用矩陣呈現社會網絡關係 ......................................................................... 26
圖3-1 社會網絡中次群體範例 ................................................................................. 33
圖3-2 實驗步驟 ......................................................................................................... 35
圖3-4 SOM神經元學習調整示意圖......................................................................... 39
圖3-5 SOM分群結果................................................................................................. 39
圖3-6 社會網絡分析中心性範例圖 ......................................................................... 43
圖4-1 一年級學生資料分布 ..................................................................................... 45
圖4-2 二年級學生資料分布 ..................................................................................... 46
圖4-3 三年級學生資料分布 ..................................................................................... 46
圖4-4 四年級學生資料分布 ..................................................................................... 46
圖4-5 一年級SOM映射圖....................................................................................... 50
圖4-6 一年級全班社會網絡圖 ................................................................................. 51
圖4-7 一年級四個群集個別網絡圖 ......................................................................... 52
圖4-8 二年級SOM映射........................................................................................... 57
圖4-10 二年級群集A與群集B社會網絡圖 .......................................................... 58
圖4-9 二年級全班社會網絡圖 ................................................................................. 58
圖4-11 二年級群集C社會網絡圖 ........................................................................... 59
圖4-12 二年級群集D社會網絡圖 .......................................................................... 59
圖4-13 三年級SOM映射圖..................................................................................... 64
圖4-14 三年級全班社會網絡圖 ............................................................................... 65
圖4-15 三年級群集B社會網絡圖........................................................................... 66
圖4-16 三年級群集C社會網絡圖........................................................................... 66
圖4-17 四年級SOM映射圖..................................................................................... 71
圖4-18 四年級全班社會網絡圖 ............................................................................... 72
圖4-19 四年級群集B社會網絡圖........................................................................... 72
圖4-20 四年級群集C社會網絡圖........................................................................... 73
圖4-21 四年級群集D社會網絡圖 .......................................................................... 73
圖5-1 準確性評估標準 ............................................................................................. 79
圖5-2 四個年級三項中心性準確度綜合比較 ....................................................... 100
圖5-3 四個年級中介中心性準確度走向 ............................................................... 101
圖5-4 四個年級程度中心性準確度走向 ............................................................... 102
圖5-5 四個年級接近中心性準確度走向 ............................................................... 103
圖5-6 各年級三項中心性準確度…………………………………………………104
參考文獻 1. Abello, J., P. M. Pardalos, and M. G. Resende. (1998). On Maximum Clique Problems in Very Large Graphs. Research Technical Report: TR 98. 32. 1, AT&T Labs.
2. Andreas, R. (1996). Cluster Visualization in Unsupervised Neural Networks (Master Thesis, Technische University Wien, Austria).
3. Barnes, J. A. (1954). Class and Committees in a Norwegian Island Parish. Human Relations, (7), 39-58.
4. Bavelas, A. (1948). A Mathematical Model for Group Structures. Human Organization, 7(3), 16-30.
5. Berkhin, P. (2006). A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional Data. Berlin: Springer.
6. Boone, L. E. and Kurtz, D. L. (1987). Original: Management, 4th ed. New York : McGraw-Hill.
7. Borgatti, S. P., Mehra, A., Brass, D. J. and Labianca, G. (2009). Network Analysis in the Social Sciences. Science, 323(5916), 892-895.
8. Brass, D. J. (1995). A Social Network Perspective on Human Resources Management. In G. R. Ferris (Ed.), Research in Personnel and Human Resources Management(pp. 39-79), Vol. 13. Greenwich, CT: JAI Press.
9. Chapple, E. D., and Sayles, L. R. (1961). The Measure of Management. New York: Macmillan.
10. Cross, R. and Prusak, L. (2002, June). The People Who Make Organizations Go-or Stop. Harvard Business Review, 80(6), 104 – 112.
11. Ehrlich, K. and Carboni, I. (2005). Inside Social Network Analysis, IBM Technical Report, http://domino.watson.ibm.com/cambridge/research.nsf/0/3f23b2d424be0da6852570a500709975/$FILE/TR_2005-10.pdf
12. Frazer, J. G. (1919). Folklore in the Old Testament( Vol.2 ). London: Macmillan.
13. Freeman L.C. (1979). Centrality in Social Networks : Conceptual Clarification. Social Networks, 1(3), 215-239.
14. Freeman, L. (2006). The Development of Social Network Analysis. Vancouver: Empirical Press.
15. Goldberg, M., Hayvanovych, M. and Magdon-Ismail, M. (2010). Measuring Similarity Between Sets of Overlapping Clusters. IEEE international conference on social computing, IEEE Computer Society, Minneapolis, Minnesota, USA.
16. Granovetter, M. (1973). The Strength of Weak Tie. American Journal of Sociology, 78(6), 1360-1380
17. Hagenbuchner, M., Tsoi, A. C., Sperduti, A. and Kc, M. (2008). Efficient Clustering of Structured Documents Using Graph Self-Organizing Maps. In Focused Access to XML Documents. Berlin: Springer.
18. Hanneman, R., and Riddle, M. (2005). Introduction to Social Network Methods. Riverside, CA: University of California, Riverside.
19. Haykin, S. (1998). Neural Networks–Comprehensive Foundation. New York : MacMillan College Publ. Co.
20. Haythornthwaite, C. (1996). Social Network Analysis : An Approach and Technique for the Study of Information Exchange. Library and Information Science Research, 18(4), 323-342.
21. Hinton, G. and Sejnowski, T. J. (1999). Unsupervised Learning: Foundations of Neural Computation. Cambridge, Massachusetts : MIT Press.
22. Huang, K. Y., Choi, N. and Horowitz, L. (2010). Web 2.0 Use and Organizational Innovation: A Knowledge Transfer Enabling Perspective. Proceedings of the Sixteenth Americas Conference on Information Systems, AMCIS, Lima, Peru.
23. Jain, A. K., Murty, M. N. and Flynn, P. J. (1999). Data Clustering: A Review. ACM Computing Surveys, 31(3), 264-323.
24. Jamali, M., and Abolhassani, H. (2006). Different Aspects of Social Network Analysis. In WI ’06: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, IEEE Computer Society, Washington, DC, USA.
25. Kilduff, M. and Tsai, W. (2003). Social Networks and Organizations. London : SAGE.
26. Kohonen, T. (1990). Self-Organizing Maps. Proceedings of the IEEE, 78(9) 1464 – 1480.
27. Kohonen, T. (1995). Self-Organizing Maps. Berlin: Springer.
28. Kohonen, T., Lagus, K., Honkela, T. and Kasaki, S. (1996). Self-Organizing Maps of Document Collections: A New Approach to Interactive Exploration. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, AAAI, Menlo Park, CA.
29. Krackhardt, D. and Porter, L. W. (1986). The Snowball Effect: Turnover Embedded in Communication Networks. Journal of.4pplied Psychology, 71, 50-55.
30. Krackhardt, D. and Hanson, J. (2000, July). Informal Networks the Company Behind the Charts. Harvard Business Review, 78(4), 104 – 111.
31. Kumar, R., Raghavan P., Rajagopalan S., and Tomkins A. (1999). Trawling the Web for Emerging Cyber-Communities, Computer Networks: The International Journal of Computer and Telecommunications Networking, 31(11-16), 1481-1493.
32. Lampinen, J. and Oja, E. (1992). Clustering Properties of Hierarchical Self-Organizing Maps. Journal of mathematical imaging and vision, 2(2-3), 261-272.
33. Levi-Strauss, C. (1969). The Elementary Structures of Kinship. Boston: Beacon Press.
34. Malinowski, B. (1922). Argonauts of the Western Pacific. New York: Dutton.
35. Marsden, P. V. and Campbell K. E. (1984). Measuring Tie Strength. Social Forces, 63(2), 482-501.
36. McGloin, J. M. and Kirk, D. S. (2010). Social Network Analysis. Handbook of Quantitative Criminology, Ch11, 209-224.
37. Mitchell, J. C. (1956). Aspects of Social Relationships Among Urban Africans in Northern Rhodesia, Manchester: Manchester University Press.
38. Mitchell, J. C. (1969). The Concept and Use of Social Networks. In J. C. Mitchell (Ed.), Social networks in urban situations. England: University of Manchester Press.
39. Moreno, J. L. (1934). Who Shall Survive? A New Approach to the Problem of Human Interrelations. Washington, DC: Nervous and Mental Disease.
40. Musolesi, M. and Mascolo, C. (2007). Designing mobility models based on social network theory. SIGMOBILE Mob. Comput. Commun. Rev, 11(3), 59-70.
41. Oja, E. (2002). Unsupervised Learning in Neural Computation. Theoretical Computer Science, 287, 187–207.
42. Radcliffe-Brown, A. R. (1940). On Social Structure. Journal of the Royal Anthropological Institute, 70(1), 1-12.
43. Reid, N. and Smith, B. W. (2009). Social Network Analysis. Economic Development Journal, 8(3), 48-55.
44. Riordan, C. M., and Weatherly, E. W. (1999). Relational demography within groups: An empirical test of a theoretical model. Paper presented at the annual meeting of the Academy of Management, Chicago.
45. Rogers, E., and Bhowmik, D. (1971). Homophily-heterophily: Relational concepts for communication research. In L. Barker & E. Kibler (Eds.), Speech communication behavior: Perspectives and principles. New York: McGraw-Hill.
46. Rogers, D. L. (1974). Sociometric Analysis of Interorganizational Relations: Application of Theory and Measurement. Rural Sociology, 39(4), 487-503.
47. Reitz, H. J.(1981). Behavior in Organizations, Illinois : Richard D. Irwin, Inc.
48. Sahar, G. and Jabee, G. (2009). Group Formation in Social Network: An Overview. MASAUM Journal of Reviews and Survey, 1(1), 105-109.
49. Schein, E. H. (1980). Organization Psychology, Englewood Cliffs. New Jersy : Prentice-Hall.
50. Serrat, O. (2009, February). Social Network Analysis. Knowledge Solution, ADB.
51. Simmel, G.(1950). The sociology of Georg Simmel (Wolff, K. transfer). Glencoe : Free Press.
52. Tasdemir, K. and Merenyi, E. (2009). Exploiting Data Topology in Visualization and Clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks, 20(4), 549-562
53. Thelwall, M. (2008). Social Networks, Genders, and Friending: An Analysis of MySpace Member Profiles. Journal of the American Society for Information Science and Technology, 59(8), 1321-1330.
54. Tichy, N. M., Tushman, M. L. and Fombrun, C. (1979). Social Network Analysis for Organizations. Academy of Management Review, 4(4), 507-519.
55. Tuckman, B. (1965). Developmental Sequence in Small Groups. Psychological Bulletin, 63(6), 384–99.
56. van Duijn, M. A. J. and Vermunt, J. K. (2006). What is Special About Social Network Analysis, Methodology, 2(1), 2-6.
57. Vesanto, J., Himberg, J., Alhniemi, E. and Parhankangas, J. (1999). Self-Organizing Map in Matlab : the SOM Toolbox. Proceedings of the Matlab DSP Conference, Espoo, Finland.
58. Vesanto, J. and Alhoniemi, E. (2000). Clustering of the Self-Organizing Map. IEEE TRANSACTIONS ON NEURAL NETWORKS, 11(3), 586-600.
59. Wasserman, S., and Faust, K. (1994). Social network analysis : Method and Applications. New York: Cambridge University Press.
60. Weber, M. (1947). The Theory of Social and Economic Organization. New York: Free Press.
61. Wey, T., Blumstein, D. T., Shen, w. and Jordan, F. (2008). Social Network Analysis of Animal Behaviour: A Promising Toor for Study of Sociality. Animal Behaviour, 75(2), 333-344.
62. Whyte, W. F. (1955). Street Corner Society. Chicago: University of Chicago Press.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-06-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信